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Foreword

This volume contains the peer-reviewed contributions presented at the 2nd
International Conference on Advances in Statistical Modelling of Ordinal
Data - ASMOD 2018 - held at the Department of Political Sciences of the Uni-
versity of Naples Federico II, (24-26 October 2018). The Conference brought
together theoretical and applied statisticians to share the latest studies and de-
velopments in the field. In addition to the fundamental topic of latent structure
analysis and modelling, the contributions in this volume cover a broad range
of topics including measuring dissimilarity, clustering, robustness, CUB mod-
els, multivariate models, and permutation tests.

The Conference featured six distinguished keynote speakers: Alan Agresti
(University of Florida, USA), Brian Francis (Lancaster University, UK), Bet-
tina Gruen (Johannes Kepler University Linz, Austria), Maria Kateri (RWTH
Aachen, Germany), Elvezio Ronchetti (University of Geneva, Switzerland),
Gerhard Tutz (Ludwig-Maximilians University of Munich, Germany) who
significantly contributed to making the Conference successful with their in-
spiring presentations.

Moreover, the Conference encompassed 22 contributions that were ac-
cepted as full papers for inclusion in this edited volume after a blind review
process of two anonymous referees.

I would also like to take this opportunity to express my gratitude to the
members of the Scientific Committee: Eugenio Brentari (University of Bres-
cia), Anna Clara Monti (University of Sannio), Monica Pratesi (University
of Florence), Roberto Rocci (University of Rome Tor Vergata), and Stefania
Capecchi, Carmela Cappelli, Francesca Di Iorio, Maria Iannario, Rosaria
Simone from the University of Naples Federico II for their helpful support. I
am also very grateful to the members of the Organizing Committee: Stefania
Capecchi, Carlo De Luca, Cinzia Della Monica, Giuliana Perretti, Maria Gio-
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vanna Porzio, Caterina Rinaldi, Filomenda Vilardi that contributed to the suc-
cess of ASMOD 2018 and worked actively for its organization.

Finally, I wish to acknowledge the sponsorship of the Italian Statistical
Society, the CLADAG (Classification and Data Analysis) Group, and the fi-
nancial support of the Department of Political Sciences and the University of
Naples Federico II.

Marcella Corduas
Chair of the Scientific Committee
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Simple ordinal model effect measures

Alan Agresti∗

Abstract: The survey effect measures for models for ordinal categorical data that can be sim-

pler to interpret that the model parameters. For describing the effect of an explanatory vari-

able while adjusting for other explanatory variables, we present probability-based measures,

including a measure of relative size and partial effect measures based on an instantaneous

rate of change. We also survey summary measures of predictive power that are analogs of

R-squared and multiple correlation measures for continuous response variables. We suggest

new measures of effect and of predictive power, illustrate the new and existing measures for

an example, and provide R code for implementing them. The talk is based on recent papers

with Claudia Tarantola and Maria Kateri.

Keywords: Average marginal effect, Ordinal probability comparison, R-squared.

∗University of Florida, aa@stat.ufl.edu





Latent class approaches for modelling multiple ordinal items

Brian Francis∗

Abstract: The modelling of the latent class structure of multiple Likert items is reviewd.

The standard latent class approach is to model the absolute Likert ratings. Commonly, and

ordinal latent class model is used where the logits of the profile probabilities for each item

have an adjacent category formulation (DeSantis et al., 2008). an alternative developed in

this paper is to model the relative orderings, using a mixture model of the relative differences

between pairs of Likert items. This produces a paired comparison adjacent category log-

linear model (Dittrich et al., 2007; Francis and Dittrich, 2017), with item estimates placed

on a (0,1) “worth” scale for each latent class. The two approaches are compared using data

on environmental risk from the International Social Survey Programme, and conclusions are

presented.

Keywords: Multiple likert items, Ordinal latent class models, Paired comparisons.

1. Introduction

Collections of multiple Likert items in questionnaires are very common,
and are usually used to measure underlying constructs. Scale from the Lik-
ert items can be built either through simply adding the item score or through
using an IRT model such as a graded response model to build a score. This
approach assumes that there is a single underlying construct to the items. The
current paper, in contrast, takes a different view. It proposes that there is a
latent class structure to the Likert items, with different classes having differ-
ent patterns of high and low responses. In this approach, score building is not
the aim; instead the aim is to understand the various patterns of responses that
might exist in the population.

The standard latent class approach to multiple ordinal indicators essen-
tially constructs a polytomous latent class model (Linzer and Lewis, 2011),

∗University of Lancaster, UK, B.Francis@Lancaster.ac.uk
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and constrains the latent class profile probabilities, imposing a linear score
ordinal model on them (Magidson and Vermunt, 2004; DeSantis et al., 2008).
This results in a latent class adjacent category ordinal model. The method
however uses the absolute responses, and this has been criticised by some
authors, as they state that each respondent has their own way of interpreting
the Likert scale. Such interpretation may itself be culturally determined, or
may depend on other covariates such as age, gender and so on. For example
younger people and males may be more likely to express a firm opinion, using
the end categories of a unipolar Likert scale, than older people and females.
The alternative is to take a relative approach. While one method of doing
this is to standardise the items for each respondent, subtracting the respon-
dent mean. This is unsatisfactory as it ignores the categorical nature of the
data. In this paper we instead develop a paired comparisons approach, which
produces a worth scale for each latent class, ranking the items in order of pref-
erence. The paper compares the two methods and discusses the advantages
and disadvantages of each method.

Some common notation is introduced which will be used to develop both
models. The Likert items are assumed to be measured on the same response
scale with identical labelling; it is assumed that there are H possible ordered
response categories taking the values 1, . . . , H for each of the J Likert items
indexed by j, and with N respondents indexed by i. yij; yij ∈ 1, 2, . . . , H

is defined to be the (ordinal) response given by respondent i to item j. A set
of H indicators for each item and respondent with the indicator zijh taking
the value 1 if yij = h and 0 otherwise.

2. The ordinal latent class model

We first introduce the ordinal latent class model, which models the ab-
solute responses. Let yij be the ordinal response of respondent i to item j.
It is assumed that there are K latent classes. The item response vector for
respondent i is

yi = (yi1, yi2, . . . , yiJ),

4



B. Francis, Latent class models for multiple ordinal items

Then the ordinal latent class model is defined by:

P (yi) =
K∑
k=1

π(k)P (yi|k)

=
K∑
k=1

π(k)
∏
j

P (yij|k) under conditional independence.

We write

P (yij|k) =
H∏
h=1

p
zijh
jkh

where pjkh is the probability of observing the ordinal response h for indicator
j given membership of latent class k - these are sometimes called the latent
class profile probabilities.

Ordinality is imposed by using an adjacent categories ordinal model and
we parameterise the model through regression parameters on the logit scale,
which separates out the intercept parameter βjh and the class specific param-
eters βjkh for each item and response category.

logit(pjkh) = βjh + βjkh

= βjh + hβjk under a linear score model

The likelihood L is then given by

L =
∏
i

K∑
k=1

π(k)P (yi|k).

Model fitting is usually carried out by using the EM algorithm - details are
given in Francis et al. (2010) and Aitkin et al. (2014). Determination of
the optimal number of classes is commonly achieved by choosing that model
which minimises an information criterion, although a wide variety of other
methods have been proposed. We have used the BIC in this paper.

5
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3. The latent class ordinal paired comparison model

An alternative to the absolute latent class approach is to work on a rela-
tive scale. This perhaps is of greater interest. We take a paired comparison
approach, using the difference in the ordinal likert responses. This allows the
development of a “worth” scale between 0 and 1 with items placed on this
scale. The sum of the item scores is defined to be 1. This section proceeds by
developing the ordinal paired comparison model, and then extends that model
by adding a mixture or latent class process to the model.

3.1. The ordinal paired comparison model

This model starts by constructing a set of paired comparisons - taking all
possible pairs of items and comparing them in turn (Dittrich et al., 2007). For
respondent i and for any two items j = a and j = b, let

xi,(ab) =


h if item a preferred by h steps to item b = yia − yib
0 if Likert ratings are equal = 0

−h if item b preferred by h steps to item a = yia − yib

The probability for a single PC response xi,(ab) is then defined by

p(xi,(ab)) =

{
µab

(
πa
πb

)xi,(ab)
: if xi,(ab) 6= 0

µab cab : if xi,(ab) = 0

The πs represent the worths or importances of the items, cab represents the
probability of no preference between items a and b and µab is a normalising
quantity for the comparison ab. Over all items, we now form a pattern vector
xi for observation i with xi = (xi,(12), xi,(13), . . . , xi,(ab), . . . , xi,(J−1,J)) and
count up the number of responses n` with that pattern. The probability for a
certain pattern ` is

p` = 4∗
∏
a<b

p(xab)

where4∗ is a constant (the same for all patterns).

6
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A log-linear model can now be constructed with observed counts n`. The
expected counts for a pattern ` are defined as m` = n p` where n is the total
number of respondents defined by n = n1 + n2 + · · · + n` + · · · + nL and
where L is the number of all possible patterns.

Taking natural logs, the log expected counts are obtained by

lnm` = α +
∑
a<b

xab(λa − λb) + 1xab=0 γab

For xab = h this is h(λa − λb) , for xab = −h this is h(−λa + λb) and for
xab = 0 this is γab. To show that this is an adjacent categories model, the
log odds of a pair for any two adjacent categories on the ordinal scale can be
examined - say h and h+ 1. Then, as m` = np`, we have

ln

(
m`(h)

m`(h+ 1)

)
= ln(µab) + h(λa − λb)− ln(µab)− (h+ 1)(λa − λb)

= λa − λb

which is true for any h as long as h or h+ 1 are not zero.
The worths πj are calculated from the λj through the formula

πj =
exp(2λj)∑J
j=1 exp(2λj)

.

3.2. Extending the model to incorporate latent classes

As before, we assume that there are K latent classes with different prefer-
ence patterns (the lambdas). The likelihood L becomes:

L =
∏
`

( K∑
k=1

qk n p`k

)
where

∑
`

p`k = 1 ∀ k and
∑
k

qk = 1.

ln p`k = α +
∑
a<b

xab(λak − λbk) + 1xab=0 γab

λj is replaced in the model byλjk, and we now have to additionally estimate
the qk. qk is the probability of belonging to class k (the mass points or class

7
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sizes). Again, we use the EM algorithm to maximise the likelihood, and use
the BIC to determine the number of classes. Typically, we need to use a range
of starting values to ensure an optimal solution.

4. An Example

Six question items on the topic of environmental danger were taken from
the 2000 sweep of the International Social Survey Programme , which focused
on issues relating to the environment. As part of this survey, the respon-
dents assessed the environmental danger of a number of different activities
and items. The question is reproduced below; each question used the same
response scale. The six Likert items are:

c air pollution caused by cars (CAR)

t a rise in the world’s temperature (TEMP)

g modifying the genes of certain crops (GENE)

i pollution caused by industry (IND)

f pesticides and chemicals used in farming (FARM)

w pollution of water (rivers, lakes, . . . ) (WATER)

with the response scale for each of the items as follows:
In general, do you think item is

4. extremely dangerous for the environment

3. very dangerous

2. somewhat dangerous

1. not very dangerous

0. not dangerous at all for the environment

Both absolute and relative latent class models are fitted to this data. The
standard ordinal latent class model (absolute) was fitted using Latent Gold
5.1 (Vermunt and Magidson, 2013), and the paired comparison ordinal latent
class model (relative) was fitted using an extension to the prefmod package
in R (Hatzinger and Maier, 2017). Both approaches used 20 different starting

8
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Table 1. BIC values from fitting latent class models (a) the standard ordinal
LC model and (b) the ordinal PC LC model

(a) standard ordinal LC model (b) Ordinal PC LC model
absolute relative

No. of classes K BIC no of parameters BIC no of parameters
1 24207.04 24
2 22680.48 31 6823.11 26
3 22153.75 38 6359.56 32
4 22112.70 45 6204.76 38
5 22097.07 52 6303.71 44
6 22084.99 59
7 22083.33 66

values to ensure that the global maximum of the likelihood was reached. Ta-
ble 1 shows the BIC values for both models, for a range of values of K. It can
be seen that the standard latent class approach needs either six or seven classes
(six classes is chosen here), whereas the paired comparison latent class model
gives a minimum BIC for K = 4. The smaller number of classes found for
the paired comparison approach is perhaps to be expected, as the standard ap-
proach needs to model both the absolute level of the Likert responses as well
as the differences.

We examine the mean Likert rating for each of the items within each of
the latent classes for the standard ordinal latent class model. In contrast, the
worths provide the interpretation of the latent classes in the paired compari-
son LC model. Both plots are shown in Figure 1, which are oriented so that
greater dangerousness (or greater danger worth) is towards the top of the plots.

It can be seen that for the standard ordinal latent class model, the first
three classes - Class 1 (51%), Class 2 (24%) and Class 3 (12%) - all show
little difference between the items, but differ according to their absolute level.
The three remaining classes, in contrast, show considerable differences be-
tween the items. The paired comparison solution gives a similar story. The
largest class shows little difference between the items, with the three remain-
ing classes showing large differences in dangerousness between items. Al-

9
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Figure 1. Item worths for (top) standard ordinal LC model and (bottom) or-
dinal paired comparison LC model

10
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though the item rankings show some minor differences between the two meth-
ods, the results are similar.

5. Discussion and conclusions

This paper has demonstrated that the paired comparison ordinal model can
be useful to understand the relative ordering of items in multiple Likert re-
sponses when the absolute level of the response is not of interest. The method
leads to simpler models, which makes interpretation simpler. There are how-
ever some restrictions in using the model. The most important is that all Lik-
ert items must be measured on the same response scale. Differences between
Likert items only make sense when this is true, and the paired comparison
method relies on that. The PC method as currently implemented also assumes
equidistance between the Likert categories, and further work is needed to re-
lax this assumption.

Acknowledgements: I am grateful to Regina Dittrich and Reinhold Hatzinger for very helpful

discussions on this topic.
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Bayesian latent class analysis with shrinkage priors:
an application to the Hungarian heart disease data

Bettina Grün∗ , Gertraud Malsiner-Walli∗∗

Abstract: Latent class analysis explains dependency structures in multivariate categorical

data by assuming the presence of latent classes. We investigate the specification of suitable

priors for the Bayesian latent class model to determine the number of classes and perform

variable selection. Estimation is possible using standard tools implementing general purpose

Markov chain Monte Carlo sampling techniques such as the software JAGS. However, class

specific inference requires suitable post-processing in order to eliminate label switching. The

proposed Bayesian specification and analysis method is applied to the Hungarian heart dis-

ease data set to determine the number of classes and identify relevant variables and results are

compared to those obtained with the standard prior for the component specific parameters.

Keywords: Bayesian latent class analysis, Shrinkage prior, Variable selection.

1. Introduction

Latent class analysis (LCA) is a modeling approach for categorical data
originally proposed by Lazarsfeld (1950). The observed association between
the manifest categorical variables is assumed to be caused by latent classes.
Conditional on class membership the categorical variables are assumed to be
independent given the class specific variable distributions.

Issues in LCA are the selection of the number of classes and the identifica-
tion of relevant variables. Within the frequentist framework using maximum
likelihood estimation Dean and Raftery (2010) investigated the use of the BIC
in combination with a headlong search algorithm to explore the model space
to determine a suitable number of classes as well as subset of variables. They
illustrate their approach using the Hungarian heart disease data set. Alterna-
tively, White et al. (2016) use stochastic search methods to select the number
of classes and relevant variables within the Bayesian framework.
∗Johannes Kepler Universität Linz, bettina.gruen@jku.at
∗∗Wirtschaftsuniversität Wien, gertraud.malsiner-walli@wu.ac.at
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In this paper we investigate the use of sparse finite mixture models in com-
bination with shrinkage priors. Malsiner-Walli et al. (2016) proposed the
sparse finite mixture model with shrinkage priors on the means for the Gaus-
sian finite mixture model. We extend this approach to the Bayesian latent
class model. We also indicate how a general purpose Markov chain Monte
Carlo (MCMC) sampler such as JAGS (Just Another Gibbs Sampler; Plum-
mer 2003) can be used to obtain draws from the posterior and present suitable
post-processing tools of the MCMC draws to eliminate label switching. This
proposed model specification and analysis strategy is used to reanalyze the
Hungarian heart disease data set.

2. Bayesian latent class model

Assume there are n observations yi, i = 1, . . . , n given. Each observation
yi is a vector of length J , i.e., J variables are observed and each element yij
contains values in {1, . . . , Lj} implying that each variable j is a categorical
variable with Lj ≥ 2 different values.

The latent class model for observations yi, i = 1, . . . .n is given by

f(yi|π,Θ) =
K∑
k=1

πk

 J∏
j=1

Lj∏
l=1

θ
1(yij=l)
k,jl

 ,
where π = (πk)k=1,...,K , Θ = (θk,jl)k=1,...,K;j=1,...,J ;l=1,...,Lj , 1() is the indica-
tor function, and

K∑
k=1

πk = 1, πk ≥ 0, ∀k,

Lj∑
l=1

θk,jl = 1, ∀k, j, θk,jl > 0, ∀k, j, l.

2.1. Prior specification

The parameter vector consists of (π,Θ). In Bayesian finite mixture model-
ing one assumes in general that the component weights π and the component
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specific parameters Θ are a-priori independent and that the component spe-
cific parameters are independently identically distributed (at least conditional
on some hyperparameters). Furthermore conditionally conjugate priors are
used to simplify MCMC sampling.

Component weights

For the component weights π a Dirichlet prior is assumed with a single
parameter e0:

π ∼ Dirichlet(e0, . . . , e0).

Rousseau and Mengersen (2011) show that e0 is an influential parameter if an
overfitted mixture model is estimated. Based on their results Malsiner-Walli
et al. (2016) propose the sparse finite mixture model where an overfitting
mixture with K, the number of components, much larger than the number of
latent classes is fitted together with the specification of a very small and fixed
value for e0, e.g., e0 = 0.0001. Under this prior setting the posterior of an
overfitting mixture asymptotically concentrates on the region of the parame-
ter space where superfluous components have negligible component weights
instead of including duplicated components.

Standard prior for the component specific parameters

In Bayesian LCA one assumes that a-priori the parameters of the variables
are independent within components. This implies that for each variable j and
component k the component specific parameter vector θk,j. a-priori follows a
Dirichlet distribution:

θk,j. ∼ Dirichlet(aj).

The value for aj is selected to regularize the likelihood which in the case of
an LCA model is often multi-modal, contains spurious modes and might have
modes at the boundary of the parameter space.

15
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Shrinkage prior for the component specific parameters

To shrink irrelevant variables towards a common Dirichlet parameter a hi-
erarchical prior is specified on aj . For this purpose the Dirichlet parameter
is re-parameterized into a mean and precision parameter plus a regularizing
additive constant:

aj = a0,j + φjµj, µj ∼ Dirichlet(mj), ∀j,

φj =
1

λj
, ∀j, λj ∼ Gamma(ν1, ν2), ∀j.

Following Malsiner-Walli et al. (2016) we suggest to use ν1 = ν2 = 0.5.
Furthermore we use uniform priors for a0,j andµj , i.e., a0,j = 1 andmj = 1.

2.2. MCMC estimation

Estimation of the Bayesian latent class model consists of approximating
the posterior distribution of (π,Θ) using MCMC methods. Diebolt and Robert
(1994) suggested to use data augmentation to facilitate MCMC estimation by
adding the class memberships of the observations to the sampling scheme.

Standard prior for the component specific parameters

The sampling scheme is given by:

1. Draw the class memberships Si for all observations i = 1, . . . , n:

Si ∼ Multinomial(1,pi), pik ∝ πk

J∏
j=1

Lj∏
l=1

θ
1(yij=l)
k,jl .

2. Conditional on S = (Si)i=1,...,n draw π from a Dirichlet distribution:

π ∼ Dirichlet(e0 + n1, . . . , e0 + nK),

nk =
n∑
i=1

1(Si = k) ∀k = 1, . . . , K.
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3. Conditional on S = (Si)i=1,...,n draw θk,j. from a Dirichlet distribution:

θk,j. ∼ Dirichlet(aj1 + nk,j1, . . . , ajLj + nk,jLj),

nk,jl =
n∑
i=1

1(Si = k)1(yij = l) ∀k, j, l.

In each MCMC iteration the class memberships S induce a partition of
the observations into K+ classes, i.e., the number of non-empty components
for this draw. In the overfitting mixture setting with K much larger than the
number of classes and e0 very smallK+ � K and the posterior distribution of
K+ can be used to estimate the number of classes. Malsiner-Walli et al. (2016)
proposed to use the mode as suitable point estimate.

Shrinkage prior for the component specific parameters

An additional sampling step is required to sample the hyperparameter val-
ues:

4. Conditional on Θ, sample µj and λj for all j.

Model specification in BUGS and estimation using JAGS

The BUGS (Bayesian inference Using Gibbs Sampling; Lunn et al. 2009)
model description language allows the specification of a Bayesian model based
on a directed acyclic graph which contains the data as well as all parameters
as nodes and where the edges are implied by the hierarchical specification of
the Bayesian model.

For a Bayesian finite mixture models which is estimated using data aug-
mentation the model specification not only includes the data y and the param-
eters (π,Θ) but also the class memberships S. The BUGS model specifica-
tion for the model including the shrinkage prior is given in Figure 1. Note that
for the standard prior the parameter a[j, 1:L[j]] is fixed and the four lines
of code defining the relationships for a, mu, phi and lambda are dropped.

The model is estimated within R using package rjags. Only a list contain-
ing the data in an array Y, the dimensions n, J, L and the parameters needs
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model {
for (i in 1:n) {
for (j in 1:J) {
Y[i, 1:L[j], j] ~ dmulti(theta[S[i], j, 1:L[j]], 1)

}
S[i] ~ dcat(pi[1:K])

}
for (j in 1:J) {
for (k in 1:K) {
theta[k, j, 1:L[j]] ~ ddirch(a[j, 1:L[j]])

}
a[j, 1:L[j]] <- a0[1:L[j]] + phi[j] * mu[j, 1:L[j]]
mu[j, 1:L[j]] ~ ddirch(m[1:L[j]])
phi[j] <- 1 / lambda[j]
lambda[j] ~ dgamma(nu1, nu2)

}
pi[1:K] ~ ddirch(e0[1:K]);

}

Figure 1. BUGS model specification for the sparse latent class model with
shrinkage priors.

to be specified. Note that Y needs to be given as an array of dimension n ×
max(Lj) × J containing zeros and ones to indicate the observed values. n

corresponds to the number of observations, J to the number of variables and L

is a vector containing the number of categories for each variable. In addition
the parameters specified are the number of components K and a vector e of
length K containing e0. Furthermore, for the standard prior a is a vector of
ones of length max(Lj), whereas for the shrinkage prior, m and a0 are two
vectors of ones of length max(Lj), and nu1 and nu2, the parameters of the
Gamma prior on the shrinkage parameter λ, are both set equal to 0.5.

Then the model is defined using jags.model() and samples are drawn
using jags.samples() while monitoring the parameters of interest using the
argument variable.names.

For the presented results the call to jags.model() included an inits ar-
gument to set a specific random seed for reproducibility and an n.adapt ar-
gument to increase the number of iterations for adaptation to 5,000. Then
jags.samples is called using 100,000 number of iterations with a thinning
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of 10.

2.3. Post-processing

The number of filled components K+ are determined for each draw and an
estimate K̂+ is obtained using the mode of the posterior distribution. If there
is a distinct class structure in the data the MCMC sampler usually converges
quickly to this number of classes and a clear mode can be identified (see
Malsiner-Walli et al. 2016).

Conditional on the number of classes selected the draws are post-processed
in the following way to obtain an identified model with suitable class specific
parameter estimates as well as class assignments of the observations.

1. Discard all draws where K+ 6= K̂+.

2. Discard all parameter draws θk,.. for empty components.

3. For each draw relabel the components to minimize the misclassification
rate between the class assignments of this draw and the class assign-
ments of the last draw.

Note that this is a very simple strategy to obtain an identified model which will
only work if the data has a clear class structure. More elaborate approaches to
deal with label switching have been proposed and might be required in more
complicated settings to obtain good results (see Papastamoulis 2016).

3. Analyzing the Hungarian heart disease data

The Hungarian heart disease data consists of 284 patients on 5 categorical
variables. For more details on the categorical variables with their levels see
Table 1. Dean and Raftery (2010) analyzed this data set with LCA. They used
maximum likelihood estimation in combination with the BIC to perform a
joint approach for variable selection and determining the number of classes.
They compared the classification results obtained with LCA to the known di-
agnosis of heart disease (angiographic disease status) available in the data set.
The known diagnosis has two categories: “< 50%” indicating less than 50%
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Variable Level Class 1 Class 2
Chest pain type Typical Angina 0.06 (0.02) 0.01 (0.01)

Atypical Angina 0.57 (0.06) 0.07 (0.04)
Non-anginal pain 0.26 (0.04) 0.08 (0.04)
Asymptomatic 0.10 (0.07) 0.84 (0.06)

Exercise induced No 0.95 (0.03) 0.33 (0.11)
Angina Yes 0.05 (0.03) 0.67 (0.11)
Gender Female 0.36 (0.04) 0.15 (0.04)

Male 0.64 (0.04) 0.85 (0.04)
Resting Normal 0.81 (0.03) 0.77 (0.04)
Electrocardiographic ST-T wave 0.15 (0.03) 0.21 (0.04)
results Estes’ criteria 0.04 (0.02) 0.02 (0.01)
Fasting blood sugar False 0.94 (0.02) 0.90 (0.03)
>120 mg/dl True 0.06 (0.02) 0.10 (0.03)

Table 1. Posterior mean (and posterior standard deviations) of the class spe-
cific parameters for the identified 2-class sparse LCA model.

diameter narrowing and “> 50” indicating more than 50% diameter narrow-
ing in any major vessel.

3.1. Sparse finite mixture model

An overfitting mixture model is estimated using e0 = 0.0001 and K = 10.
In addition a uniform prior is assumed for the class specific parameters, i.e.,
ak,jl = 1. The posterior distribution of the number of non-empty components
K+ has a clear mode at 2 with 99.7% of the samples having 2 non-empty
components. The remaining samples had 3 non-empty components (0.2%).
Using the samples with 2 non-empty components to identify the model results
in a posterior mean estimate for the component weight of the larger class π1

of 0.579 with a posterior standard deviation of 0.075.
The class specific parameters for the categorical variables are given in Ta-

ble 1. These results can be compared to those in Dean and Raftery (2010)
who reported the maximum likelihood estimates for the parameters of a two-
class latent class model. The posterior mean and the maximum likelihood
estimates are similar. However, the Bayesian approach also provides uncer-
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Figure 2. Posterior distribution of the class specific parameters for the vari-
able “Chest pain type”.

tainty estimates as given by the posterior standard deviations and the full pos-
terior distributions which are visualized in Figure 2 for the variable “Chest
pain type”. In particular for parameter values which are estimated to be close
to the boundary the posterior is non-normal and the full posterior allows to
estimate suitable credible intervals for these parameters.

Observations can also be classified to the class they are most often as-
signed to during MCMC sampling after model identification. This partition
is compared to the clinical partition contained in the data (see Table 3 on the
left). The congruence between these two partitions is very high and results
are similar to those reported in Dean and Raftery (2010).

3.2. Sparse finite mixture model with shrinkage prior

An overfitting mixture model is estimated using e0 = 0.0001 and K = 10.
In addition the shrinkage prior is imposed on the class specific parameters.
The posterior distribution of the number of non-empty components K+ has a
clear mode at 2, with 99.9% of the samples having 2 non-empty components.
The remaining samples had 3 non-empty components (0.2%). Using the sam-
ples with 2 non-empty components to identify the model results in a posterior
mean estimate for the component weight of the larger class π1 of 0.572 with
a posterior standard deviation of 0.068. The class specific parameters for the
variables are given in Table 2 and the congruence between the partitions in
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Variable Level Class 1 Class 2
Chest pain type Typical Angina 0.06 (0.02) 0.01 (0.01)

Atypical Angina 0.57 (0.06) 0.07 (0.04)
Non-anginal pain 0.26 (0.04) 0.08 (0.04)
Asymptomatic 0.10 (0.07) 0.83 (0.06)

Exercise induced No 0.94 (0.03) 0.34 (0.10)
Angina Yes 0.06 (0.03) 0.66 (0.10)
Gender Female 0.36 (0.04) 0.15 (0.04)

Male 0.64 (0.04) 0.85 (0.04)
Resting Normal 0.81 (0.03) 0.79 (0.04)
Electrocardiographic ST-T wave 0.16 (0.03) 0.19 (0.04)
results Estes’ criteria 0.03 (0.01) 0.02 (0.01)
Fasting blood sugar False 0.94 (0.02) 0.91 (0.03)
>120 mg/dl True 0.06 (0.02) 0.09 (0.03)

Table 2. Posterior mean (and posterior standard deviations) of the class spe-
cific parameters for the identified 2-class sparse LCA model with shrinkage
prior.

Standard prior Shrinkage prior
<50% >50% <50% >50%

Class 1 139 15 135 14
Class 2 42 88 46 89

Table 3. Estimated versus clinical partition for the identified 2-component
sparse LCA model with standard or shrinkage prior.

Table 3 on the right. Overall similar results are obtained for the two different
component specific priors. However, using a shrinkage prior reduces the risk
of overfitting heterogeneity and thus allows to obtain more precise estimates
in case irrelevant variables are identified. Figure 3 shows the posterior distri-
butions of the shrinkage parameters λ for each variable. Small values indicate
that a variable is identified as not being relevant for distinguishing between the
two classes and that similar parameter values are estimated for both classes.
These results confirm those by Dean and Raftery (2010) who concluded that
the variables “Resting Electrocardiographic results” and “Fasting blood sugar
>120 mg/dl” are irrelevant.
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Figure 3. Box plot of the shrinkage parameter λ for each variable.

4. Conclusion

Suitable priors for Bayesian LCA are presented which regularize the likeli-
hoods to avoid boundary solutions, induce sparse solutions with respect to the
number of classes as well as shrinkage to perform implicit variable selection.
Their application is demonstrated on the Hungarian heard disease data which
was previously analyzed based on maximum likelihood estimation. This data
set contains a clear structure with respect to the number of classes as well
as the relevance of variables for clustering. Suitable priors for such a setting
were proposed. Future research needs to investigate how these priors perform
and need to be adapted in more challenging settings.

Acknowledgements: This research was funded by the Austrian Science Fund (FWF): P28740.
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Modelling ordinal data: a φ-divergence based approach

Maria Kateri∗

Abstract: The role of the φ-divergence (see Pardo, 2016) in constructing models for ordi-

nal data will be discussed. In particular well-known models for contingency table analysis

(see Kateri, 2014) and regression models for binary or ordinal responses (see Agresti, 2013)

will be revisited and redefined through divergence measures like the Kullback-Leibler and

the Pearson divergences. Since these divergences are members of the φ-divergence family,

we shall proceed by embedding these models in generalized families of models derived by

replacing the Kullback-Leibler or Pearson divergence through the φ-divergence. Properties

of these model families will be considered and the role of the specific divergence measure

used in describing the underlying dependence structure will be commented. More specific,

φ-divergence based association models for two-way tables have been introduced in Kateri

and Papaioannou (1995) and further discussed in Kateri (2018). Asymmetry models for

square contingency tables are generalized by Kateri and Papaioannou (1997) while the quasi

symmetry model for ordinal variables by Kateri and Agresti (2007). A φ-divergence based

extension of the binary logistic regression model can be found in Kateri and Agresti (2010).

Crucial quantities in developing and interpreting these models are the φ-scaled generalized

odds ratios, based on the corresponding generalization of the odds ratio for 2× 2 tables (see

Espendiller and Kateri, 2016). The focus here will be on higher dimensional problems. Char-

acteristic members of the presented φ-divergence based families of models, corresponding

to the power divergence of Cressie and Read (1984), will be implemented on examples and

discussed. The approach is maximum likelihood based. The maximum likelihood estimators

(MLEs) of the models considered cannot be derived in closed-form expressions and have to

be computed numerically. Finally, emphasis will be given in closed-form approximations to

the MLEs that simplify the model fitting approach and can be valuable in model selection

procedures in high-dimensional set-ups.

Keywords: Contingency tables, Generalized odds ratios, Logistic regression.
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Robust statistical analysis of ordinal data

Elvezio Ronchetti∗

Abstract: This paper discusses the robustness issues of estimators and tests in the analysis

of ordinal data based on ordinal response models. From a diagnostic point of view, we inves-

tigate the effects of outlying covariates and of specific deviations due to some respondents’

behavior, on the reliability of maximum likelihood estimators and related test procedures. In

particular we highlight the role of the link function in this context. Subsequently, we propose

robust M -estimators as an alternative to maximum likelihood estimators. We show that M

based inference outperform maximum likelihood inference, producing more reliable results

in the presence of deviations from the underlying assumptions.

Keywords: Ordinal response models, Link functions, M-estimation.

1. Introduction

Ordinal data play an important role in applied research in many areas, such
as medicine, psychology, sociology, political sciences, economics, market-
ing, and so on. They typically arise when items concerning opinions, prefer-
ences, judgements, evaluations, worries, etc., are expressed as ordered cate-
gories. The classical statistical approach to the analysis of ordered response
models is based on the assumption that a (unobserved) latent variable drives
the response and the model is then embedded within the Generalized Linear
Model framework (McCullagh and Nelder (1989)); see standard books such
as Agresti (2010) and Tutz (2012) among others. A different approach based
on the so-called CUB models (Piccolo (2003); Iannario and Piccolo (2016)),
parametrizes the probability of a given response as a mixture of a shifted Bi-
nomial and a discrete Uniform random variable. This approach does not re-
quire the specification of a model for the latent variable and describes directly
the effect of the covariates on the feeling and the uncertainty underlying the
respondents’ choices.
∗Research Center for Statistics and Geneva School of Economics and Management, University of

Geneva, Switzerland, Elvezio.Ronchetti@unige.ch
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In real situations, it has been recognized that respondents may deliberately
or unconsciously choose a wrong category, as a consequence of a satisfic-
ing aptitude or a search for a shelter category (Iannario (2012)). This phe-
nomenon, in addition to the occurrence of gross-errors or to erratic behavior
by a few respondents, produces a contamination of the assumed model distri-
bution, which can have an important impact on the resulting estimators and
tests.

Robust statistics deals with deviations from the underlying assumptions
and with their effects on the inferential procedures; see e.g. the books by Hu-
ber (1981, 2nd edition by Huber and Ronchetti, 2009), Hampel et al. (1986),
Maronna et al. (2006). However, in spite of the huge body of literature in the
past decades, the area of ordinal data has been somewhat neglected. A few ex-
ceptions are Hampel (1968), Victoria-Feser and Ronchetti (1997), Ruckstuhl
and Welsh (2001), Moustaki and Victoria-Feser (2006), Croux et al. (2013),
and Iannario et al. (2016).

Using ideas and tools of robust statistics, we propose robust M -estimators
as an alternative to maximum likelihood estimators and we show thatM based
inference outperform maximum likelihood inference, producing more reliable
results in the presence of deviations from the underlying assumptions.

2. Maximum likelihood estimation

In this paper we consider a rich class of ordinal response models based on a
latent variable with covariates and different link functions. More specifically,
let Y be an ordinal variable of interest which is linked to an underlying latent
variable Y ∗ through the relationship

Y = j ⇐⇒ αj−1 < Y ∗ ≤ αj, j = 1, 2, . . . ,m, (1)

where −∞ = α0 < α1 < . . . < αm = +∞ are the thresholds (cutpoints)
of the continuous support of the latent variable, and m represents the given
number of categories of Y .

The variable Y ∗, in turn, depends on p ≥ 1 covariates, so that for the i-th
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statistical unit we have the latent regression model

Y ∗i = Xi1β1 +Xi2β2 +· · ·+Xipβp+εi = X ′iβ+εi, i = 1, 2, . . . , n, (2)

where Xi = (Xi1, Xi2, . . . , Xip)
′, β = (β1, β2, . . . , βp)

′ and εi is a random
variable with distribution function G(ε) and density g(ε) respectively. Since
Y ∗ is unobservable, a random sample is given by (Yi,Xi), for i = 1, 2, . . . , n.

Relationship (1) yields the following probability mass function for Yi con-
ditionally onXi = xi ≡ (xi1, xi2, . . . , xip)

′

P (Yi = j | xi) = P (αj−1 < Y ∗i ≤ αj) = G(αj−x′iβ)−G(αj−1−x′iβ), (3)

for j = 1, 2, . . . ,m. Common specifications of G(ε) are the Gaussian, the lo-
gistic and the extreme value distributions; see Agresti (2010) for an extensive
review.

From (3) it is easy to write the likelihood function of the parameters and
their score function. In particular, the k-th component of the score function of
the regression parameter β is given by

m∑
j=1

I[yi = j]eij(θ)xik, (4)

where

eij(θ) =
g(αj − x′iβ)− g(αj−1 − x′iβ)

G(αj − x′iβ)−G(αj−1 − x′iβ)
, i = 1, 2, . . . , n , j = 1, 2, . . . ,m ,

(5)
are the generalized residuals (Franses and Paap (2004), p. 123), I[·] is the
indicator function, and θ = ((α1, . . . , αm−1)′,β′)′.

By the standard theory of robust statistics, the influence function (Ham-
pel, 1974) of the Maximum Likelhood Estimator (MLE) is proportional to
its score function, which is unbounded in the covariate x and possibly in
the generalized residuals depending on the distribution G(·). This leads to
the conclusion that the MLE is locally non-robust. Notice that for the probit
and the complementary log-log link, the generalized residuals are unbounded,
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whereas for the logistic link they are bounded. This implies that the logistic
link provides robustness for the MLE at least with respect to deviations in the
generalized residuals.

3. Robust alternatives

A class of robust alternatives to the MLE can be obtained by introduc-
ing weights in the ML score function (4). This defines M -estimators with a
bounded influence function, which yields reliable estimates of the parameters,
and can be used to derive robust testing procedures. A typical weight function
is given by

w(yi,xi,θ) =

1, if
m∑
j=1

I[yi = j] | eij(θ) | ‖xi‖ < c

c
m∑
j=1

I[yi = j] | eij(θ) | ‖xi‖
, if

m∑
j=1

I[yi = j] | eij(θ) | ‖xi‖ ≥ c .

(6)

A Mahalanobis distance ||xi|| =
{

(xi − µ̂X)′Σ̂−1
X (xi − µ̂X)

}1/2 can be
used for the norm of the covariates in (6), which needs however to be based
on a robust multivariate estimator of location µ̂X and scatter Σ̂X . Notice that
these weights provide valuable diagnostic information on possible outliers
and substructures in the data. The tuning constant c determines a trade-off
between efficiency and robustness and can be computed by requiring a given
efficiency (e.g. 95%) for the resulting estimator at the assumed model.

4. A numerical example: a shelter effect

We consider the following simple model. The response variable Y assumes
4 categories and depends on two qualitative variablesWi, for i = 1, 2. Each of
them assumes three categories, coded by two dichotomous 0−1 variables Xa

i
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and Xb
i such that Xa

i +Xb
i ≤ 1. The latent variable is Y ∗ = 2.5Xa

1 +1.0Xb
1 +

3.6Xa
2 +1.8Xb

2+ε, where ε ∼ N(0, 1) and the cutpoints areα = (1.2, 2.8, 5)′.
Now we consider the case when five Yi, which originally take value 1, 2 or

3, are changed into 4. This kind of contamination occurs when the selected
category (in this case “four”) can be regarded as a shelter category: a choice
that the respondents feel comfortable with, although it appears incoherent
with their profiles in terms of covariates; see Iannario (2012), for a more
extensive illustration of shelter choices.

The minimum and the maximum MSE-ratios of each parameter estimate
between the MLE and M -estimators are shown in Table 1. Values of c be-
tween 1 and 1.5 seem thoroughly appropriate to achieve robust estimation
according to the two criteria. If say c = 1.25 is taken, the gain in efficiency in
the estimation of a single parameter varies between 37.6% and roughly 140%,
which is a quite remarkable achievement obtained by M -estimators.

Table 1. Efficiency criteria when M -estimation is performed with the probit
link and a shelter effect occurs.

c 1 1.25 1.5 1.75 2 2.5 3
Min(MSE-ratio) 1.354 1.376 1.373 1.342 1.299 1.201 1.124
Max(MSE-ratio) 2.556 2.398 2.227 2.029 1.819 1.485 1.253

Acknowledgements: This paper is a summary of Iannario M., Monti A. C., Piccolo D.,

Ronchetti E. (2017) Robust inference for ordinal response models, Electronic Journal of

Statistics, 11, 3407-3445, where all the details can be found.

References

Agresti A. (2010) Analysis of ordinal categorical data, 2nd ed., Wiley, New York.
Croux C., Haesbroeck G., Ruwet C. (2013) Robust estimation for ordinal regression, Jour-

nal of Statistical Planning and Inference, 143, 1486-1499.
Franses P.H., Paap R. (2004) Quantitative models in marketing research, Cambridge Uni-

versity Press, Cambridge.

31



ASMOD 2018

Hampel F.R. (1968) Contribution to the theory of robust estimation, Ph.D Thesis, University
of California, Berkeley.

Hampel F. R. (1974) The influence curve and its role in robust estimation, Journal of the
American Statistical Association, 69, 383-393.

Hampel F.R., Ronchetti E.M., Rousseeuw P.J., Stahel W.A. (1986) Robust statistics: the
approach based on influence functions, Wiley, New York.

Huber P.J. (1981) Robust statistics, Wiley, New York.
Huber P.J., Ronchetti E. (2009) Robust statistics, 2nd ed., Wiley, New York.
Iannario M. (2012) Modelling shelter choices in a class of mixture models for ordinal re-

sponses, Statistical Methods and Applications, 21, 1-22.
Iannario M., Piccolo D. (2016) A comprehensive framework of regression models for ordi-

nal data, METRON, 74, 233-252.
Iannario M., Monti A. C., Piccolo D. (2016) Robustness issues for CUB models, TEST, 25,

731-750.
Maronna R.A., Martin R.D., Yohai V. J. (2006) Robust statistics: theory and methods, Wi-

ley, New York.
McCullagh P., Nelder, J. A. (1989) Generalized linear models, 2nd edition, Chapman and

Hall, London.
Moustaki I., Victoria-Feser M. P. (2006) Bounded-influence robust estimation in generalized

linear latent variable models, Journal of the American Statistical Association, 101,
644-653.

Piccolo D. (2003) On the moments of a mixture of uniform and shifted binomial random
variables, Quaderni di Statistica, 5, 85-104.

Ruckstuhl A.F., Welsh A.H. (2001) Robust fitting of the binomial model, The Annals of
Statistics, 29, 1117-1136.

Tutz G (2012) Regression for categorical data, Cambridge University Press, Cambridge.
Victoria-Feser M.P., Ronchetti E. (1997) Robust estimation for grouped data, Journal of the

American Statistical Association, 92, 333-340.

32



Uncertainty, dispersion and response styles
in ordinal regression

Gerhard Tutz∗

Abstract: Alternative approaches to model uncertainty, dispersion and the tendency to

middle or extreme categories in ordinal regression are considered. The focus is on repeated

measurements when a person responds on several items. Then it is possible to account for

individual response tendencies known as response styles. Extensions of the adjacent cate-

gories model are proposed that allow for the noncontingent response style, that is, a person

answers randomly or nonpurposefully, and the extreme response style, which means a person

has a tendency to prefer extreme or middle categories. Also mixture models for repeated

measurements are discussed.

Keywords: Response styles, Uncertainty, Dispersion.

1. Introduction

Ordinal regression models aim at linking the choice of a response category
to explanatory variables. In traditional models, for example in the most widely
used proportional odds model, the explanatory variables determine primarily
the location of the response on an underlying latent scale, which turns into the
location on the range of observed categories, see, for example, Agresti (2009).
However, alternative effects that determine the response on an ordinal scale
might be present. One effect, which has been modeled in various versions
of the CUB model (Iannario and Piccolo, 2016) is uncertainty. The manifest
response in a category is determined not only by the preference towards a cat-
egory but also by the the uncertainty of the respondent. CUB models refer
to the underlying psychological mechanism that generates uncertainty. Alter-
native effects are the impact of explanatory variables on the dispersion of the
categorical response and the preference for middle and extreme categories.

If a person answers to several items one has repeated measurements on a
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person. Then it is possible to include subject-specific effects that contain the
individual tendency to respond as response styles, that means as a consistent
pattern of responses that is independent of the content of the response. The
presence of response styles may affect the response behaviour and, when ne-
glected yield biases estimates, see, for example, Baumgartner and Steenkamp
(2001), Van Vaerenberg and Thomas (2013).

In the following the modeling of uncertainty, dispersion and a tendency to
middle and extreme categories in cross-sectional data is considered briefly.
Then the modeling of response styles as individual traits is considered.

2. Mixture Models in Ordinal Regression

Natural candidates for the modelling of uncertainty in ordinal regression
are mixture models. In particular the CUB model and its various extensions
use this potential, see, for example, Piccolo (2003), Iannario and Piccolo
(2016). A general mixture model with an indecision component has the form

P (Ri = r|xi) = πiPP (Yi = r|xi) + (1− πi)PI(Ui = r), (1)

where Ri represents the observed response and Yi, Ui are the unobserved ran-
dom variables taking values from {1, . . . , k}. The variable Yi represents the
preference of a person for categories whereas Ui represents the indecision of
a person. For the modelling of the preference, which is the deliberate choice,
one can use any ordinal response model, for example, the proportional odds
model, the adjacent categories model, or a shifted binomial model. The latter
is used in the CUB model. For the mixture probability one typically uses a
logit model logit(πi) = xi

Tγ.

The choice of the indecision component determines which form of indeci-
sion is specified. Classical CUB-type models assume the uniform distribution,
PU(Ui = r) = 1/k, which can be seen as the strongest form of uncertainty;
a person chooses at random from the available categories. In a CUB model
(binomial preference, uniform indecision) the Gini index, which measures
deviation from the uniform distribution and therefore uncertainty, is mono-
tonically increasing with the strength of the uncertainty 1− πi.

34



G. Tutz, Response styles

Alternatively, one can specify indecision by using distributions with dif-
ferent shapes. If one uses use a beta-binomial distribution centered at the
middle of the response categories (Tutz and Schneider, 2018) or a discretized
beta distribution (Simone and Tutz, 2018) one models dispersion in the un-
certainty component, which may be seen as a response style, more concrete
a response style that allows for a tendency to middle or extreme categories.
Alternative forms of response style distributions in the uncertainty component
were used by Gottard et al (2016).

When using a centered distribution in the uncertainty component one al-
lows for varying dispersion. For categorical data one might want to avoid the
variance as a dispersion measure since it demands a higher scale level than
the ordinal scale level. For Y ∈ {1, . . . , k} a more appropriate measure is
the sum D =

∑k
j=2 var(Yj)4/(k − 1), where Yj = 1 if Y ≥ j and Yj = 1

otherwise. One obtains D = 0 if Y has a one-point distribution and D = 1

if p(Y = 1) = P (Y = k) = 0.5. If indecision is modeled by a discretized
beta distribution the dispersion of the indecision can vary between zero and
one. Thus, for large indecision one obtains a wide range of dispersion for the
response.

Dispersion can also be modeled in the preference part instead of the indeci-
sion part. The CUBE model (Iannario, 2014) uses the beta binomial distribu-
tion to model (over)dispersion in the preference part. Alternative approaches
to model dispersion effects that are linked to explanatory variables are the
location-scale model and the location-shift model. The location-scale model
(McCullagh, 1980) uses the cumulative model in the extended form

P (Y ≤ r) = F (
β0r + xTβ

zTα
),

where F (.) is a distribution function, typically the logistic function, and z is
an additional vector of explanatory variables that determines dispersion. The
model is also known as heterogeneous choice model or heteroscedastic logit
model. The location-shift version of the cumulative model (Tutz and Berger,
2017) is

P (Y ≤ r) = F (β0r + xTβ + (r − k/2)zTα).
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The term (r − k/2)zTα shrinks or widens the thresholds of the cumulative
model.

3. Responses on Several Items

If one has just one observation per person one may link uncertainty and a
tendency to middle or extreme categories to explanatory variables but can not
model them as individual traits. However, when a person responds on more
than one item it is possible to model uncertainty and dispersion on the indi-
vidual level. Then, uncertainty and dispersion may be seen as response styles
that describe an individual’s tendency to respond, which also can depend on
explanatory variables. A widely used approach in item response modeling is
the partial credit model, which is a member of the family of adjacent cate-
gories models.

Let Ypi ∈ {0, 1, . . . , k}, p = 1, . . . , P , i = 1, . . . , I denote the ordinal
response of person p on item i. The partial credit model (PCM) assumes for
the probabilities

log

(
P (Ypi = r)

P (Ypi = r − 1)

)
= θp − δir, r = 1, . . . , k,

where θp represents the attitude or ability of a person and the δir are item-
specific thresholds on the latent scale. It turns into an ordinal regression model
if the person parameter is determined by explanatory variables. If one replaces
θp by θp + xTβ and considers the thresholds as item-specific intercepts one
obtains the adjacent categories model for repeated measurements,

log

(
P (Ypi = r)

P (Ypi = r − 1)

)
= θp + xp

Tβ − δir, r = 1, . . . , k,

with an subject-specific parameter θp, for which one assumes a normal distri-
bution centered at zero. We will consider two extensions that include response
styles as a continuous trait and will also discuss mixture models.
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3.1. The Extreme Response Style Adjacent Categories Model

As in the location-shift model one may shift the thresholds of the model to
obtain more concentration of the response in the middle or extreme categories.
More concrete, one replaces the thresholds δir by the term δir − (m − r +

0.5)αp, where m = k/2 and αp is a subject-specific parameter that modifies
the thresholds. The new thresholds are constructed such that intervals between
thresholds are widened or narrowed by the subject-specific parameter αp. In
the case of five response categories one obtains the thresholds

0 | 1 | 2 | 3 | 4

δi1 − 1.5αp δi2 − 0.5αp δi3 + 0.5αp δi4 + 1.5αp

It is seen that the difference between adjacent thresholds changes by the
value αp, which means a widening if αp is positive and a narrowing if αp is
negative. The closed model has the form

log

(
P (Ypi = r)

P (Ypi = r − 1)

)
= (m−r+0.5)αp+θp+xp

Tβ−δir, r = 1, . . . , k.

The role of the parameter αp becomes obvious when considering extreme
values:

For αp →∞ one obtains that the probability mass is concentrated in the
middle, that is, one has P (Ypi = m/2) = 1, if k is even (odd number of
categories), and P (Ypi = (k − 1)/2) + P (Ypi = (k + 1)/2) = 1 if k is
odd (even number of categories).

For αp → −∞ one obtains that the probability mass is concentrated in
the extreme values, that is, P (Ypi = 0) + P (Ypi = k) = 1.

The parameter αp represents the tendency to middle or extreme categories.
Large values indicate a subject’s tendency to choose middle categories while
small values indicate a tendency to extreme categories. Often the latter ten-
dency is referred to as extreme response style. The model considered here
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accounts for the tendency to middle categories and to extreme categories si-
multaneously. Nevertheless, for simplicity we refer to it as the extreme re-
sponse style adjacent categories model. For earlier versions see also Tutz et
al (2018).

3.2. The Uncertainty Adjacent Categories Models

An alternative is model is obtained by including a factor as in the location-
scale model. Let again αp denote a subject-specific parameter in the model

log

(
P (Ypi = r)

P (Ypi = r − 1)

)
= eαp(θp + xp

Tβ − δir), r = 1, . . . , k, (2)

In the case of ordered thresholds (δir ≤ δi,r+1) one obtains the following:

For αp →∞ a person with θp+xp
Tβ ∈ (δir, δi,r+1) has the probability

P (Ypi = r) = 1. One observes a distinct response, the person knows
exactly which category he/she prefers. The property holds for all k if
one defines in addition δi0 = −∞, δi,k+1 =∞.

For αp → −∞ one obtains P (Ypi = r) = 1/(k + 1)) for all abili-
ties/attitudes θp. The person has a discrete uniform distribution over the
response categories, which means simple guessing.

The role of the parameter αp differs from that in the extreme style model.
Large values of αp indicate a subject’s tendency to a distinct response while
small values indicate a tendency to random responding. The response style
is also known as noncontingent response style. It is found if persons have a
tendency to respond to items carelessly, randomly, or nonpurposefully. We
use the general term uncertainty to characterize that tendency.

In both models one can let the person parameter αp depend on explanatory
variables by using αp + zTα instead of αp.
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4. Response Styles and Mixture Models

An alternative approach to model response styles, which has been propa-
gated in psychometrics, is to use finite mixture models. One assumes that the
responses stem from a finite mixture

P ((Yp1, . . . , YpI)) =
M∑
m=1

πmPm((Yp1, . . . , YpI)|θp, δ(m)
i ).

It is assumed that the population is subdivided into M latent classes, where
Pm(.) denotes the model in the latent class m with parameters θp, δ

(m)
i =

(δ
(m)
i1 , . . . , δ

(m)
ik )T , and πm is the mixture probability (size) of the latent class

m. The model is based on the mixture approach, which has some tradition in
psychometrics, for an overview see Von Davier and Carstensen (2007).

The model is not without problems. Typically the same item response
model, for example the partial credit model, is fitted within these classes,
some components of the mixture may represent the substantive trait, some
may represent response style behaviour, see, for example, Eid and Rauber
(2000). However, the number of classes is unknown. One gets quite different
models if one fits, for example, two or three classes since all the parameters
change when allowing for one more class. Even if a number of classes is
fixed it is frequently difficult to interpret what feature is represented by a
class, it might be a response style or some other dimension that is involved
when responding to items. The latter problem arises since the classes are not
specified to represent specific traits.

It seems more appropriate to use mixtures of models that represent ex-
plicitly what one wants to identify. This approach is in the tradition of CUB
models, which use different models in a mixture of two components, one for
the deliberate choice and one for the uncertainty. In this spirit one can use a
mixture of models that represent the preference and the explicit response style
that is suspected to be present.

LetRpi represent the observed response for person p and item i and Ypi, Upi
be unobserved random variables taking values from {0, . . . , k}. We propose
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the finite mixture model

P (Rpi = r|θp, πp, δi) = πpPM(Ypi = r|θp, δi) + (1− πp)PR(Upi = r).

The distribution of Ypi is determined by PM(Ypi = r|xi), with M standing
for the model, in our case the partial credit model. The random variable Upi
represents the response style and can be specified in different ways.

As in CUB models one can use the uniform distribution, that is, PR(Upi =

r) = 1/k. Then one models the noncontingent response style. An advantage
is that the distribution is the same for all persons, therefore the tendency to
using a response style is contained in the mixture probability π. If one uses for
Upi a discretized beta distribution as in Simone und Tutz (2018) one models
the tendency to middle or extreme categories. Then an additional parameter
for the person’s tendency to respond is needed.

The strength of an individual’s tendency to using a response style is con-
tained in the mixture component, which is allowed to be subject-specific by
assuming

πp =
exp(ξ0 + ξp)

1− exp(ξ0 + ξp)
,

where ξp follows a normal distribution, N(0, σ2). If σ2 = 0, ξ0 → −∞ one
obtains the partial credit model as limiting case.

5. Concluding Remarks

It should be mentioned that the inclusion of response styles as continuous
traits in the extreme response style and the uncertainty adjacent categories
model are specifically designed for the adjacent categories model. If one tries
to include similar terms in the cumulative model the effects have quite differ-
ent meaning. As an example let us consider the proportional odds model for
repeated measurements. In the model

log

(
P (Ypi ≤ r)

P (Ypi > r)

)
= eαp(θp − δir), r = 1, . . . , k,
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the subject-specific factor eαp has an interpretation that differs from that in
the corresponding adjacent categories model. For αp → ∞ one obtains for
a person with θp ∈ (δir, δi,r+1) the probability P (Ypi = r) = 1, that means
a person knows exactly what he/she wants. However, for αp → −∞ one
obtains P (Ypi = 0) = P (Ypi = k) = 0.5, and therefore not the noncontin-
gent response style. The strong probability in the extreme categories is more
related to dispersion and the preference for extreme categories than to the
noncontingent response style.
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Inducing a desired value of correlation between
two point-scale variables

Alessandro Barbiero∗

Abstract: Focusing on point-scale random variables, i.e., variables whose support space

is given by the first m integers, we discuss how a desired value of Pearson’s correlation can

be induced between two assigned probability distributions, which are linked to a joint dis-

tribution via a copula function. After recalling how the value of the desired ρ is not free to

vary within [−1,+1], but is bounded to a narrower interval depending on the two marginal

distributions, we devise a procedure to recover the same feasible value ρ for different depen-

dence structures, focusing on one-parameter copulas encompassing the entire dependence

spectrum.

Keywords: Attainable correlations, Copula, Ordinal variables.

1. Introduction

Datasets arising in the social sciences often contain ordinal variables. In
particular, Likert scale items are those where, given a statement, the subject
indicates strong agreement, agreement, neutrality, disagreement, or strong
disagreement. A relevant example derives from questionnaires about cus-
tomers’ satisfaction. Satisfaction can be regarded as a multidimensional latent
(i.e., unobservable) phenomenon, involving several aspects that can be usu-
ally measured using graded scales, such as “Very dissatisfied”, “Dissatisfied”,
“Neither satisfied nor dissatisfied”, “Satisfied” and “Very satisfied”. Likert
scales are often treated as interval scales, by scoring the ordered categories
using the integers 1, 2, 3, . . . ; this amounts to assuming that the categories
are evenly spaced. Though representing just an arbitrary assumption, it is
quite a common and accepted practice as well as proceeding to further mul-
tivariate statistical analyses handling them as (correlated) univariate discrete
variables.
∗Department of Economics, Management and Quantitative Methods, University of Milan,

alessandro.barbiero@unimi.it
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Now, one may be interested in building and simulating a multivariate ran-
dom vector whose univariate components are point-scale variables with as-
signed marginal distributions and whose pairwise correlations are chosen a
priori as well. In the following we will limit our analysis to the bivariate
case, which is by far easier to deal with, but whose results, with some cau-
tion, can be extended to the multivariate context. We consider two point
scale random variables (r.v.s), X1 and X2, defined over the support spaces
X1 = {1, 2, . . . ,m1} and X2 = {1, 2, . . . ,m2}, respectively, with probability
mass functions p1(i) = P (X1 = i), i = 1, . . . ,m1, and p2(i) = P (X2 =

j), j = 1, . . . ,m2. We want to determine some bivariate probability mass
function pij = P (X1 = i,X2 = j), i = 1, . . . ,m1; j = 1, . . . ,m2 such that
its margins are p1 and p2 and the correlation ρX1,X2 is equal to an assigned ρ.
In order to give an answer to this question, we have first to recall two prop-
erties of Pearson’s correlation, which applies to both the continuous and, to
even a larger extent, the discrete case; this is the topic of Section 2. In Section
3, we briefly recall how to build copula-based bivariate discrete distributions.
Section 4 is devoted to the description of the proposed procedure for inducing
a desired value of correlation between two point-scale variables. Section 5
illustrates an application to CUB distributions.

2. Attainable correlations between two random variables

A first important but often neglected feature of Pearson’s correlation is
that given two marginal cumulative distribution functions (c.d.f.s) F1 and F2

and a correlation value ρ ∈ [−1,+1], it is not always possible to construct
a joint distribution F with margins F1 and F2, whose correlation is equal
to the assigned ρ. We can state the following result, concerning “attainable
correlations” (see McNeil et al. 2005, pp.204-205). Let (X1, X2) be a random
vector marginal cdfs F1 and F2 and an unspecified joint cdf; assume also that
Var(X1) > 0 and Var(X2) > 0. The following statements hold:

1. The attainable correlations form a closed interval [ρmin, ρmax] with
ρmin < 0 < ρmax.

2. The minimum correlation ρ = ρmin is attained if and only if X1 and X2
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are countermonotonic. The maximum correlation ρ = ρmax is attained
if and only if X1 and X2 are comonotonic.

3. ρmin = −1 if and only if X1 and −X2 are of the same type, and ρmax =

1 if and only if X1 and X2 are of the same type.

For point-scale r.v.s X1 and X2, it is then clear that the maximum correlation
is +1 if and only if they are identically distributed; whereas the minimum
correlation can never be −1. The values ρmin and ρmax can be computed
by building the cograduation and countergraduation tables (see, Ferrari and
Barbiero, 2012, for an example of calculation).

A second fallacy of Pearson’s correlation can be resumed as follows: Given
two margins F1 and F2 and a feasible linear correlation ρ, the joint distribution
F having margins F1 and F2 and correlation ρ is not unique. In other terms,
the marginal distributions and pairwise correlations of a r.v. do not univocally
determine its joint distribution. Even if this second fallacy may represent a
limit from one side, on the other side represents a form of flexibility, since
it means that given two point-scale r.v.s and a consistent value of ρ, there
are different (possibly, infinite) ways to join them into a bivariate distribution
with that value of correlation, as we will see in the next two sections.

3. Generating bivariate discrete distributions via copulas

How can we generate from a bivariate distribution respecting the assigned
margins and correlation? Using copulas represent a straightforward solution.
A d-dimensional copula is a joint c.d.f. in [0, 1]d with standard uniform c.d.f.s
Uj , j = 1 . . . , d:

C(u1, . . . , ud) := P (U1 ≤ u1, . . . , Ud ≤ ud).

The importance of copulas in the study of multivariate c.d.f.s is summarized
by the Sklar’s theorem (see McNeil et al., 20005), whose version for d = 2

states that if F1 and F2 are the c.d.f.s of the point-scale r.v.s X1 and X2, the
function

F (i, j) = C(F1(i), F2(j)), i = 1, . . . ,m1; j = 1, . . . ,m2 (1)
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defines a valid joint c.d.f. over X1 × X2, whose margins are F1 and F2. The
only requirement we have to impose is that the copula C is able to encompass
the entire range of dependence, from perfect negative dependence (ρmin) to
perfect positive dependence (ρmax). Among copulas enjoying this property,
we recall the Gauss copula, the Frank copula, and the Plackett copula.

The Gauss copula

The d-variate Gauss copula is the copula that can be extracted from a d-
variate normal vector YYY with mean vector µµµ and covariance matrix Σ and is
exactly the same as the copula of XXX ∼ Nd(000, P ), where P is the correlation
matrix of YYY . In two dimensions, it can be expressed, for ρ 6= ±1, as:

CGa(u1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1− ρ2
Ga

e
− s

2
1−2ρGas1s2+s22

2(1−ρ2) ds1ds2.

Independence, comonotonicity, and countermonotonicity copulas are special
cases of the bivariate Gauss copula (for ρGa = 0, ρGa = 1, and ρGa = −1,
respectively).

The Frank copula

The one-parameter bivariate Frank copula is defined as

CF (u1, u2; θ) = −1

κ
ln

[
1 +

(e−κu1 − 1)(e−κu2 − 1)

e−κ − 1

]
,

with κ 6= 0. For κ → 0, we have that the Frank copula reduces to the in-
dependence copula; for κ → ∞, it tends to the comonotonicity copula; for
κ→ −∞, it tends to countermonotonicity copula.

The Plackett copula

The one-parameter bivariate Plackett copula is defined as

CP (u1, u2;κ) =
1 + (θ − 1)(u1 + u2)−

√
[1 + (θ − 1)(u1 + u2)]2 − 4θ(θ − 1)u1u2

2(θ − 1)
,
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with θ > 0. When θ = 1, it reduces to the independence copula, whereas
for θ → 0 it tends to the countermonotonicity copula and for θ → ∞ to the
comonotonicity copula.

4. Inducing a desired value of correlation between two point-scale random
variables

The bivariate p.m.f. corresponding to (1) can be computed as

p(i, j) = F (i, j)− F (i− 1, j)− F (i, j − 1) + F (i− 1, j − 1) (2)

Computing the correlation coefficient for a bivariate point-scale variable (2)
is very easy; since

ρx1x2 = (E(X1X2)− E(X1)E(X2))(Var(X1)Var(X2))−1/2 (3)

with µ1 = E(X1) =
∑m1

i=1 ip1(i), Var(X1) =
∑m1

i=1(i− µ1)2p1(i) (analogous
results hold for X2), and E(X1X2) =

∑m1

i=1

∑m2

j=1 ijp(i, j).
Once the marginal distributions of X1 and X2 are assigned, their cor-

relation coefficient ρX1,X2 will depend only on the copula parameter θ ∈
[θmin, θmax]; this relationship may be written in an analytical or numerical
form, say ρX1,X2 = g(θ). Since the function g is not usually analytically
invertible, inducing a desired value of correlation ρ between two point-scale
variables, falling in [ρmin, ρmax], by setting an appropriate value of the θ, is
a task that can be generally done only numerically, by finding the (unique)
root of the equation g(θ) − ρX1,X2 = 0. If ρX1,X2 is a monotone increasing
function of the copula parameter, it can be implemented by resorting to the
following iterative procedure (see Ferrari and Barbiero, 2012; Barbiero and
Ferrari, 2015b):

1. Set θ(0) = θΠ (with θΠ being the value of θ for which the copula C
reduces to the independence copula); ρ(0) = 0.

2. Set t = 1 and θ = θ(t), with θ(t) some value strictly greater (smaller)
than θ(0) if ρ > (<)0

3. Compute F (i, j; θ(t)) using (1)
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4. Compute p(i, j; θ(t)) using (2)

5. Compute ρ(t) using (3)

6. If |ρ(t) − ρ| < ε stop; else
set t← t+ 1,
θ(t) ← min(θmax, θ

(t−1) +m(ρ− ρ(t−1))) if ρ > 0, or
θ(t) ← max(θmin, θ

(t−1) +m(ρ− ρ(t−1))) if ρ < 0,

with m =
θ(t−1) − θ(t−2)

ρ(t−1) − ρ(t−2)
; go back to 3.

The above heuristic algorithm makes sense if g is a monotone increasing func-
tion, which is often the case: for the Gauss, Frank, and Plackett copulas, the
linear correlation is an increasing function of the dependence parameter θ,
keeping fixed the two marginal distributions. The advantage of the proposed
algorithm stands in the two following (connected) features: i) in the capacity
of finding the appropriate value of θ without making use of any sample from
the two marginal distributions, ii) in the possibility of controlling a priori the
error ε (absolute difference between target and actual values of ρX1,X2); set-
ting ε equal to 10−7 generally allows to recover θ in a few steps.

Existing procedures for solving the same problem are available in the lit-
erature, but do not enjoy the two features above mentioned. For example, the
proposal by Demirtas (2006), requires the preliminary generation of a “huge”
bivariate sample of binary data.

5. Application to CUB random variables

A CUB r.v. X is defined as the mixture of a shifted Binomial and a discrete
Uniform distribution over the support {1, 2, . . . ,m}, for m > 3 (Piccolo,
2003). Its probability mass function is

P (X = i) = π

(
m− 1

i− 1

)
ξm−j(1− ξ)j−1 + (1− π)

1

m

with (π, ξ) a parameter vector with the parametric space (0, 1]× [0, 1].
Corduas (2011) proposed using the Plackett distribution in order to con-

struct a one parameter bivariate distribution from CUB margins; this proposal
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was later investigated by Andreis ad Ferrari (2012), also in a multivariate
direction. Here, we reprise and extend these attempts of constructing a bivari-
ate CUB r.v. Let suppose we want to build a bivariate model with margins
X1 ∼ CUB(m1 = 5, π1 = 0.4, ξ1 = 0.8) and X2 ∼ CUB(m2 = 5, π2 =

0.7, ξ2 = 0.3); we can find the values of the attainable correlations using
the function corrcheck in GenOrd (Barbiero and Ferrari, 2015a). It returns
as minimum and maximum correlations the values ρmin = −0.952003 and
ρmax = 0.8640543. We can then proceed and select a desired feasible value of
correlation between the two CUB variates, say ρ = 0.6. We can then recover
the values of ρGa (for the Gauss copula), κ (for the Frank copula), and θ (for
the Plackett copula), according to the iterative procedure illustrated in the pre-
vious section. Setting ε = 10−7, we obtain ρGa = 0.6898959, κ = 5.453455,
and θ = 11.30106. The three joint p.m.f.s, sharing the same level of linear
correlation, are reported in Table 1. It is easy to notice the differences among
them. For example, the probability P (X1 = 2, X2 = 3) takes the values
0.0922, 0.0948, and 0.1008, in the three joint distributions.
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Table 1. Bivariate distribution with margins X1 ∼ CUB(m1 = 5, π1 =
0.4, ξ1 = 0.8) and X2 ∼ CUB(m2 = 5, π2 = 0.7, ξ2 = 0.3) and ρx1x2 = 0.6,
obtained based on different copulas

(x1, x2) 1 2 3 4 5 total

1 0.0553 0.0711 0.0959 0.0551 0.0065 0.2838
2 0.0088 0.0317 0.0922 0.1178 0.0333 0.2838
3 0.0013 0.0077 0.0377 0.0869 0.0479 0.1814
4 0.0002 0.0020 0.0150 0.0566 0.0565 0.1302
5 0.0000 0.0004 0.0045 0.0319 0.0838 0.1206

total 0.0657 0.1129 0.2452 0.3481 0.2281 1
(a) Gauss copula

(x1, x2) 1 2 3 4 5 total

1 0.0498 0.0744 0.1042 0.0483 0.0071 0.2838
2 0.0126 0.0297 0.0948 0.1167 0.0300 0.2838
3 0.0022 0.0060 0.0301 0.0916 0.0515 0.1814
4 0.0007 0.0019 0.0108 0.0548 0.0621 0.1302
5 0.0003 0.0009 0.0053 0.0366 0.0775 0.1206

total 0.0657 0.1129 0.2452 0.3481 0.2281 1
(b) Frank copula

(x1, x2) 1 2 3 4 5 total

1 0.0518 0.0775 0.1001 0.0439 0.0105 0.2838
2 0.0093 0.0251 0.1008 0.1221 0.0266 0.2838
3 0.0025 0.0060 0.0276 0.1004 0.0450 0.1814
4 0.0012 0.0026 0.0105 0.0532 0.0627 0.1302
5 0.0008 0.0018 0.0062 0.0285 0.0833 0.1206

total 0.0657 0.1129 0.2452 0.3481 0.2281 1
(c) Plackett copula
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Dissimilarity measure for ranking data via mixture of copulae

Andrea Bonanomi∗ , Marta Nai Ruscone∗∗ , Silvia Angela Osmetti∗∗∗

Abstract: We propose a new dissimilarity measure for ranking data by using a mixture

of copula functions. This measure evaluates the dissimilarity between subjects expressing

their preferences by rankings in order to classify them by a hierarchical cluster analysis. The

proposed measure is based on the Spearman’s grade correlation coefficient on a transforma-

tion, operated by the copula, of the rank denoting the level of the importance assigned by

subjects in the classification process. The mixtures of copulae are a flexible way to model

different types of dependence structures in the data and to consider different situations in the

classification process. The advantage by using mixtures of copulae with lower and upper tail

dependence is that we can emphasize the agreement on extreme ranks, when extreme ranks

are considered more important. An example on simulated data illustrates our proposal.

Keywords: Ranking data, Mixture of copulae, Distance measure.

1. Introduction

Cluster analysis of ranking data aims at the identification of groups of sub-
jects with a homogenous, common, preference behavior. Ranking data occur
when a number of subjects are asked to rank a list of objects according to their
personal preference order. Cluster analysis input is a distance matrix, whose
elements measure the distances between rankings of two subjects. The choice
of the distance dramatically affects the final result. The issue when dealing
with ordinal data lies in computing an appropriate distance matrix. Several
distance measures have been proposed for ranking data (Alvo and Yu, 2014).
The most important are referred to Kendall’s τ , Spearman’s ρ and Cayley dis-
tances (Critcholw et al., 1991; Mallows, 1957; Spearman, 1904). When the
aim is to emphasize top ranks, weighted distances for ranking data should
be used (Tarsitano, 2005). In this context, Bonanomi et al (2017) propose a

∗Università Cattolica del Sacro Cuore, Milano, andrea.bonanomi@unicatt.it
∗∗LIUC Università Cattaneo, mnairuscone@liuc.it
∗∗∗Università Cattolica del Sacro Cuore, Milano, silvia.osmetti@unicatt.it
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distance measure for ranking data based on copula function with (lower) tail
dependence for emphasize the agreement on top ranks, when the top ranks are
considered more important than the lower ones.

In this work we propose a generalization of the distance using a mixture
of copulae. In this way we have a more flexible instrument to model different
types of data dependence structures and to consider different situations in the
classification process. For example, by using mixture of copulae with lower
tail dependence, we emphasize top ranks or by using mixture of copulae with
upper tail dependence, we emphasize low rank. A mixture of copulae with
both lower and upper tail dependence permits to assign more weight to both
extreme ranks.

An example on simulated data illustrates our proposal.

2. Our proposal of a dissimilarity measure

Bivariate copula is a function that captures the dependence structure in a
bivariate joint bivariate distribution function. Bivariate copula is, in fact, a
class of bivariate distributions, whose marginals are uniform on the unit inter-
val. It describes the dependence structure existing across pairwise marginal
random variables (rv).

Sklar’s theorem (see Nelsen, 2013) shows that every bivariate/multivariate
distribution can be written via a copula representation. Let (Y1, Y2) be a bi-
variate rv with marginal cdfs FY1(y1) and FY2(y2) and joint cumulative distri-
bution function (cdf) FY1,Y2(y1, y2; θ), then there always exists a copula func-
tion C(·, ·; θ) with C : I2 → I such that

FY1,Y2(y1, y2; θ) = C
(
FY1(y1), FY2(y2); θ

)
, y1, y2 ∈ IR. (1)

If the marginal cdfs are continuous then the copula C(·, ·; θ) is unique. More-
over, if FY1(y1) and FY2(y2) are continuous the copula can be found by the
inverse of (1):

C(u, v) = FY1,Y2(F−1
Y1

(u), F−1
Y2

(v); θ) (2)

with u = FY1(y1) and v = FY2(y2).
We consider a new family of copulae defining via finite mixtures (Nelsen,
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2013). The idea is to create a new very flexible copula by combining two
copulae, as follow:

CM(u, v) = αC1(u, v; θ1) + (1− α)C2(u, v; θ2) (3)

where α ∈ [0, 1] is the weight of the mixture and C1 and C2 are two different
copulae, with parameters θ1 and θ2, respectively. The two components of the
mixture could not be from the same copula family.

We propose to use a mixture of copulae to define the distances between
subjects in a hierarchical cluster analysis for ranking data.

We consider two subjects, a and b, expressing their preferences on k ob-
jects by rankings.

We consider the mixture of copulae CM in equation (3) to describe the de-
pendence structure of each pair of latent continuous variables (Y ∗a , Y

∗
b ) under-

lying the pair (Ya, Yb) = {i, j, pij} for i, j = 1, 2, .., k. (Ya, Yb) is a bivariate
ordinal variable where i and j represent the rank denoting the increasing or
decreasing level of the importance assigned to the subjects on the k objects
and pij is the joint frequency with values 1/k, if the pair (i, j) is observed,
and 0, otherwise.

Let F1 and F2 the cdfs of Y ∗a and Y ∗b , we assume that each pair (Ya, Yb) cor-
responds to the bivariate discrete random variable obtained by a discretisation
of the continuous latent variable (U = F (Y ∗a ), V = F (Y ∗b )) with support on
[0, 1]× [0, 1], and cdf given by CM .

Let Aij = [ui−1, ui]× [vj−1, vj], i, j = 1, 2, . . . , k, be the rectangles defin-
ing the discretisation. Let p11, . . . , pkk be the joint probabilities of the ordinal
variables corresponding to the rectangles A11, . . . , Akk.

Let VCM (A11), . . . , VCM (Akk) be the volumes of the rectangles under the
copula CM , then there exists a unique element in the family of the mixture of
copulae that satisfies the following relationship:

(VCM (A11), . . . , VCM (Aij), . . . , VCM (Akk)) = (p11, . . . , pij, . . . pkk). (4)

Given the mixture of copulae CM that satisfies the (4), we define the Spear-
man’s grade correlation coefficients for the pair (Ya, Yb), with a 6= b, that
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performs well in measuring the agreement between two rankings:

ρS(CM) = 12

∫
I2

[αC1(u, v; θ1) + (1− α)C2(u, v; θ2)]dudv − 3 (5)

The Spearman’s grade correlation coefficients of the convex combination of
copulae corresponds to the convex combination of the individual Spearman’s
rho of the two copulae. Finally, the distance da,b between the rankings of the
subjects a and b is:

dCa,b =

√
1− ρs(CM) + 1

2
(6)

We calculate the distances in (6) for each pair of n subjects. We propose to
use the obtained n × n matrix as the dissimilarity matrix in a hierarchical
cluster analysis.
By using (6) and the mixture of copulae in hierarchical cluster analysis, we
can analyze different situations in the classification process.
For example, we consider three families of Archimedean copulae with dif-
ferent characteristics: Gaussian, Clayton, and Gumbel copula. The Gaussian
copula is a symmetric copula that permits positive and negative correlation
between the variables and does not allow the dependence in the tails. Instead,
Clayton and Gumbel copulae are asymmetric. They permit only positive as-
sociation and exhibit, respectively, strong left (lower) and right (upper) tail
dependence.
By choosing only Gaussian copulae in the mixture, we assign the same weight
to all ranks. It is possible to proof that, in a hierarchical cluster analysis,
the use of Gaussian copula or classical Spearman rank correlation coefficient
(Spearman approach) gives the same classification. By choosing a mixture of
Gaussian and Clayton or Gumbel copulae, we can assign to the ranks differ-
ent "weights" and emphasize the agreement in particular on the top or lower
ranks. Therefore, by choosing a mixture of Clayton and Gumbel copulae, we
emphasize the agreement only on extreme ranks.
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3. An example on simulated data

In this section, we illustrate our proposal by an application to simulated
data, analyzed in Bonanomi et al. (2017). The data consist on 10 rankings
representing the judgements of 10 consumers about 6 aspects of a product,
attributing "1" to the most important aspect and "6" to the least important one,
reported in Table 1.

Table 1. Example: rankings of 6 products given by 10 consumers

Consumer Rankings Consumer Rankings
1 1 2 3 4 5 6 6 1 2 3 6 5 4
2 2 1 3 4 5 6 7 1 2 3 6 4 5
3 1 2 3 4 6 5 8 1 2 4 3 5 6
4 2 1 3 4 6 5 9 3 1 2 4 5 6
5 3 2 1 4 5 6 10 1 2 3 5 4 6

Our aim is to emphasize the extreme ranks (top ranks, lower ranks, or both
simultaneously but with different emphasis as well), to develop a more flexi-
ble classification than the classical one obtained by Spearman rank correlation
coefficient. To achieve this aim, we implement a hierarchical cluster analysis
with a distance measure based on a mixture of Gumbel and Clayton copu-
lae. This mixture allows positive associations between rankings and lower
and upper tail dependence.

We performed the cluster analysis by using a complete linkage clustering
method. We compare the dendrogram obtained by implementing a hierarchi-
cal cluster analysis based on the mixture of copulae with the one obtained by
the Spearman rank correlation as similarity measure.

The Spearman approach assigns the same importance (weights) at every
rank. The mixture of Gumbel and Clayton copulae with weight α = 0.5

(equal weight for every copula) assigns to the ranks different weights empha-
sizing the agreement only on the extreme ranks.

Referring to Table 1, let consider the consumers 1, 2, 3 and 8. If we address
the issue of emphasizing top and lower ranks simultaneously, the preferences
of consumers 1 and 8 are more similar than 1 and 2. Moreover, consumer 1
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and 8 would be both separated by consumer 3.
In Figure 1 we compare the two dendrograms and we show the change of

position of the subjects by using the two different approaches.
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Figure 1. Comparison of dendrograms: Spearman grade correlation co-
efficient by mixture of copulae (Clayton and Gumbel copulae with weight
α = 0.5) (on the left) and Spearman correlation coefficient (on the right)

The consumers 1 and 8, whose preferences differ only for the two central
ranks, are grouped together at a very low height in the dendrogram obtained
by using a mixture (left side of Figure 1), while they are grouped at a greater
height in the dendrogram on the right side (Spearman approach).

The consumers 1 and 2, whose preferences differ only for the two top
ranks, are grouped together at a very low height in the dendrogram obtained
by using the Spearman approach, while they are grouped at a greater height
in the left side.

Moreover, a classification procedure that emphasizes both the top and the
lower ranks approaches 1 and 8 and it separates consumer 3.
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In conclusion, the classical approach could be used when one wants to
assign equal weights to all ranks in the definition of the distance between
rankings. Spearman’s grade correlation coefficient ρs using the mixture of
Gumbel and Clayton copulae gives much more importance on top and lower
ranks simultaneously, emphasizing the similarity of consumers with similar
extreme ranks.

Acknowledgements: Authors would like to thank the Professor Giuseppe Boari for his useful

suggestions.
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Measurement of interrater agreement for the assessment
of language proficiency

Giuseppe Bove∗ , Elena Nuzzo∗∗ , Alessio Serafini∗∗∗

Abstract: A proposal of a procedure to measure interrater absolute agreement for ordi-

nal scales is provided capitalizing on the dispersion index for ordinal variables proposed by

Giuseppe Leti. The procedure allows to avoid the problem of restriction of variance that

sometimes affects traditional measures of interrater agreement in different fields of applica-

tion. Rating data on a Likert scale regarding a study of assessment of language proficiency

conducted at Roma Tre University are used for a comparison of the new procedure with some

known measures of interrater absolute agreement.

Keywords: Interrater agreement, Ordinal scales, Language proficiency.

1. Introduction

Ordinal rating scales (e.g., Likert scales) are frequently developed to eval-
uate language proficiency in written or oral tasks. The levels of the rating
scales have to be defined as clearly as possible, in order to allow their ap-
plication by both expert and non-expert raters. Before their application, new
rating scales are tested out by a group of raters, who assess the language profi-
ciency of a corpus of argumentative (written or oral) texts produced by native
and/or non-native writers. When each rater evaluates each writer, the raters
provide comparable categorizations of the writers. The extent to which the
raters categorizations coincide, the rating scale can be used with confidence
without worrying about which raters produced those categorizations. So the
main interest here is in analysing the extent that raters assign the same (or
very similar) values on the rating scale (absolute agreement).

Many methods for measuring agreement among raters have been proposed
and applied in many domains in the areas of psychology, education, sociol-
∗Università Roma Tre, giuseppe.bove@uniroma3.it
∗∗Università Roma Tre, elena.nuzzo@uniroma3.it
∗∗∗La Sapienza Università di Roma, alessio.serafini@uniroma1.it
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ogy, and medical research (reviews can be found, for instance, in Gwet 2014
and von Eye & Mun 2005). Those based on Pearson product-moment corre-
lation are mainly considered for examining rating consistency (i.e., similarity
of rank orders produced by the ratings). Other measures like those based on
Cohen’s Kappa coefficient and intraclass correlation coefficients seem more
appropriate for the analysis of absolute agreement.

A problem that can be encountered when measuring interrater consistency
or absolute agreement is that of restriction of variance (e.g., LeBreton et al.
2003), that consists in an attenuation of estimates of rating similarity caused
by an artefact reduction of the between-subjects variance in ratings. This can
happens in language studies when the same task is administered to native (L1)
and non-native (L2) writers, and the analysis compares rater agreement in the
two groups separately. Even in the presence of very good absolute agreement,
traditional measures (e.g., Cohen’s Kappa coefficient and intraclass correla-
tions) can assume low values, especially for L1 group, because the range of
ratings provided by the raters are concentrated in one or two very high lev-
els of the scale (a range restriction that determines a between-writer variance
restriction). In order to overcome this problem, measures for absolute agree-
ment (or consensus) have been proposed (see LeBreton et al. 2003) that mea-
sure the within-writer variance of ratings (i.e., the between-rater variance)
separately for each writer and summarize the results in a final average index
(usually normalized in the interval [0, 1]). In this approach, the influence of the
low level of the between-writer variance is removed by the separate analysis
of the ratings of each writer. In the next two paragraphs of this contribution,
after a more detailed presentation of the restriction of variance problem, we
propose to measure interrater absolute agreement by using the dispersion in-
dex proposed by Leti (1983, pp. 290-297) for ordinal variables, in this way
taking into consideration the ordinal level of the measurement scales.

2. Interrater absolute agreement and the restriction of variance problem

Measures of interrater absolute agreement like Cohen’s Kappa (and exten-
sions to take into account three or more raters) and intraclass correlations are
usually applied when dealing with rating performed by ordinal scales. A first
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problem of these procedures is that they are not defined originally for ordi-
nal scales and so have to be adapted. A second major problem is that of the
restriction of variance mentioned in the introduction. A small fictitious exam-
ple concerning scores on a six-point scale given by two raters to ten writers is
provided in Table 1. The two raters provide very similar ratings and high ab-

Table 1. Ratings on a six-point Likert scale

Writer Rater 1 Rater 2

1 6 5
2 6 6
3 6 6
4 5 5
5 5 6
6 6 6
7 5 5
8 6 5
9 5 6

10 6 6

solute agreement, however concentrated in the two higher levels of the scale
(level 5 and 6). Traditional interrater absolute agreement measures provide
very low values for data in Table 1 (e.g., Kappa = 0.17; assuming a two-way
random effects model we obtained ICC(A, 1) = 0.18 − here the symbol for
intraclass correlation is in accord with McGraw & Wong 1996). The reason
for these results is that both indices are influenced by the range restriction of
the scale: the Kappa index is computed on the reduced 2× 2 contingency ta-
ble associated with only two levels of the scale; the between-writers variance
in the numerator of the intraclass correlation ICC(A, 1) is quite small as a
consequence of the range restriction.

To circumvent the problem of low between-writers variance, one of the in-
dices of interrater absolute agreement reviewed in LeBreton & Senter (2008)
can be applied. As noted in the introduction, they are based on the idea to
measure the within-writer variance of ratings (i.e., the between-rater variance)
separately for each writer; in this way they should be insensitive to a lack of
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Table 2. Values of the interrater absolute agreement indices

Writer rWG CV(%) d

1 0.91 9.09 0.2
2 1 0 0
3 1 0 0
4 1 0 0
5 0.91 9.09 0.2
6 1 0 0
7 1 0 0
8 0.91 9.09 0.2
9 0.91 9.09 0.2

10 1 0 0
Average 0.97 3.64 0.08

between-writer variance. One of the most popular indices in this group was
proposed by James, Demaree and Wolf (1993); for a scale X the computation
is given by

rWG = 1− s2
x

σ2
E

,

where s2
x is the observed between-rater variance of the ratings and σ2

E is the
between-rater variance obtained from a theoretical null distribution represent-
ing a complete lack of agreement among raters. Raters in perfect agreement
(s2
x = 0), provide a value rWG = 1. In the applications, rWG values greater

than 0.7 (possibly 0.8) are considered associated with high level of interrater
absolute agreement (see LeBreton & Senter 2008, p. 836 table 3). When the
null distribution is assumed as uniform, the equation for the corresponding
variance σ2

EU is

σ2
E = σ2

EU =
A2 − 1

12
,

where A refers to the total number of levels of the scale X . In the second
column of Table 2 we reported the values obtained for rWG, along with their
average value in the last row of the table. All the values are greater than
0.9 and their average 0.97 testifies a substantial level of interrater agreement.
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Very similar information could be obtained simply applying the coefficient
of variation separately to the ratings of each writer (see the column labelled
CV(%) in Table 2).
The index rWG (as other indices reviewed in LeBreton & Senter 2008) allows
to avoid the problem of variance restriction but as traditional measures of
interrater agreement is defined only for interval data. Besides, depending on
the choice of the null distribution, negative values could be obtained. For
these reasons, in the next paragraph we propose a new procedure to measure
absolute agreement for ordinal rating scales.

3. A descriptive measure of interrater agreement for ordinal scales

The dispersion of an ordinal categorical variable can be measured by the
index proposed in Leti (1983, pp. 290-297), given in the following equation:

D∗ = 2
K−1∑
k=1

Fk(1− Fk),

where K is the number of categories of the variable and Fk is the cumulative
proportion associated to category k. The index is nonnegative and it is easy
to prove that D∗ = 0 when all the observed categories are equal (absence of
dispersion). The maximum value of the index (D∗max) is obtained when all
observations are concentrated in the two extreme categories of the variable
(maximum dispersion), and it is

D∗max =
K − 1

2
for N even,

D∗max =
K − 1

2

(
1− 1

N2

)
for N odd,

where N represents the total number of observations. For N moderately large,
the maximum of the index can be assumed equal to (K−1)

2
.

So it is possible to define a measure of dispersion normalized in the interval
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[0, 1] given by

d =
D∗

D∗max
.

Two advantages of this proposal respect to measures of absolute agreement
like rWG are that d does not depend by the formulation of a null distribution
for normalization and that can never be out of the range [0, 1]. The values of
d computed separately for each writer in Table 1 (reported in the last column
of Table 2), and the corresponding average value 0.08 confirm the substantial
level of interrater agreement already revealed by rWG. It is interesting to
notice thatD∗ has properties of within and between dispersion decomposition
analogous to the well-known variance decomposition (Grilli & Rampichini
2002).

4. An application to the assessment of language proficiency

To show and compare the performances of the indices of interrater abso-
lute agreement considered in the previous sections on an empirical data set,
we have analysed ratings obtained in a research conducted at Roma Tre Uni-
versity (see Nuzzo & Bove 2018, for a detailed description). The main aim
of the study was to investigate the applicability of a six-point Likert scale for
functional adequacy (an aspect of language proficiency) developed by Kuiken
and Vedder (2017) to texts produced by native and non-native writers, and to
different task types (narrative, instruction, and decision-making tasks). The
scale comprises four subscales, corresponding to the four dimensions of func-
tional adequacy identified by the authors of the scale: content, task require-
ments, comprehensibility, coherence and cohesion (the reader is referred to
Kuiken and Vedder 2017 for a detailed presentation of scales and descrip-
tors). 20 native speakers of Italian (L1) and 20 non-native speakers of Italian
(L2) participated in the study as writers. All the texts produced by L1 and L2
writers (120 texts in total for the three tasks) were assessed by 7 native speak-
ers of Italian on the Kuiken and Vedder’s six-point Likert scale. The raters did
not have any specific experience in judging written texts, and can therefore be
categorized as being non-expert. For our purposes, we have selected ratings
concerning only the narrative task and the subscale comprehensibility.
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The results of the interrater agreement analysis for the subscale are sum-
marized in Table 3, where the intraclass correlation ICC(A, 1) and the av-
erage values of rWG, CV and d are shown for L1, L2 and total groups.
The intraclass correlation ICC(A, 1) (that assumes a two-way random ef-
fects model) provides a low-moderate level of agreement for the total group
of fourty students (ICC(A, 1) = 0.67). The results for the average values of
CV (12.16%) and d (0.22) seem in accord with ICC(A, 1), while the aver-
age value of rWG (0,87, assuming as uniform the null distribution) highlights
a higher level of agreement. When the analysis focuses separately on the two
subgroups of L1 and L2 students, results of the L2 group show minor differ-
ences respect to the total group while those regarding the L1 group deserve
particular attention. Interrater agreement measured by intraclass correlation
is very low in the L1 group (ICC(A, 1) = 0.14). Analysing the dispersion
of the ratings given to this subgroup, it comes out that most of the raters used
almost exclusively levels 5 and 6 of the scale. So, as in the fictitious example
of Section 3, this range restriction caused the very low value of the intraclass
correlation, despite the substantial agreement among the raters that scored all
the L1 texts in the same high levels. This problem does not regard the results
for the other three indices of Table 3 (rWG = 0.90; CV = 8.12%; d = 0.17)
that show a very good level of absolute agreement.

Table 3. ICC(A, 1) and averages of rWG , CV and d for the comprehensibil-
ity subscale in the L1, L2 and the Total groups

Group N ICC(A, 1) rWG CV(%) d

L1 20 0.14 0.90 8.12 0.17
L2 20 0.63 0.84 16.20 0.28

Total 40 0.67 0.87 12.16 0.22

5. Conclusions

This contribution provides a new procedure to measure interrater absolute
agreement for ordinal scales, capitalizing on the dispersion index for ordinal
variables proposed by Leti (1983). Preliminary results obtained by applying

67



ASMOD 2018

the procedure to data regarding a study of assessment of language proficiency
conducted at Roma Tre University seem encouraging. The procedure is not
affected by the restriction of range of the ratings assigned by the raters, in
accord with some other measures of interrater agreement for interval data,
with the further advantage that it does not need the assumption of a null dis-
tribution to be computed. A number of issues needs to be investigated in
future research, including: a study of the sampling properties of the proposed
procedure; the possibility to define further measures of interrater absolute
agreement, capitalizing on the dispersion decomposition provided in Grilli
& Rampichini (2002); comparison with methods based on the latent variable
approach (e.g., Raykov et al. 2012).

References

Grilli L., Rampichini C. (2002) Scomposizione della dispersione per variabili statistiche
ordinali [Dispersion decomposition for ordinal variables], Statistica, 62, 111-116.

Gwet K.L. (2014) Handbook of inter-rater reliability (4-th ed.), Advanced Analytics, LLC,
Gaithersburg MD, USA.

James L. J., Demaree R. G., Wolf G. (1993) rwg: An assessment of within-group interrater
agreement, Journal of Applied Psychology, 78, 306-309.

Kuiken F., Vedder I. (2017) Functional adequacy in L2 writing. Towards a new rating scale
Language Testing, 34, 321-336.

LeBreton J.M., Burgess J.R.D., Kaiser R.B., Atchley E.K., James L.R. (2003) The restric-
tion of variance hypothesis and interrater reliability and agreement: Are ratings from
multiple sources really dissimilar?, Organizational Research Methods, 6, 80-128.

Leti G. (1983) Statistica descrittiva, Il Mulino, Bologna.
McGraw K.O., Wong S.P. (1996) Forming inferences about some intraclass correlation co-

efficients, Psychological Methods, 1, 30-46.
Nuzzo E., Bove G. (2018) Assessing functional adequacy across tasks: A comparison of

learners and native speakers’ written texts, (submitted for publication).
Raykov T., Dimitrov D.M., von Eye A., Marcoulides G.A. (2012) Interrater agreement eval-

uation: a latent variable approach, Educational and Psychological Measurement, 73,
512-531.

von Eye A., Mun E.Y. (2005) Analyzing rater agreement. Manifest variable methods,
Lawrence Erlbaum Associates, Mahwah, New Jersey.

68



Modelling perceived variety in a choice process
with nonlinear CUB

Eugenio Brentari∗ , Marica Manisera∗∗ , Paola Zuccolotto∗∗∗

Abstract: In consumer research, marketing, public policy and other fields, individuals’

choice depends on the number of possible alternatives. In addition, according to the litera-

ture, the choice satisfaction is influenced not only by the number of options but also by the

perceived variety. The aim of the present study is to apply a novel statistical approach to

model perceived variety, in order to better understand the perceptions of individuals about

the variety of the possible choice options. We resort to the class of CUB (Combination of

Uniform and Binomial random variables) models, in particular to the Nonlinear extension of

CUB, in order to (i) provide a measure for perceived variety, (ii) add a measure of uncer-

tainty, (iii) give insights on the state of mind of respondents toward the response scale. The

application of the Nonlinear CUB to real data previously published shows interesting results.

Keywords: Consumer choice, Rating data, Transition probabilities.

1. Introduction

According to several studies in the field of human judgement and decision
making, the number of options in a choice process influence choice satis-
faction. Some authors support the existence of a phenomenon called “choice
overload” or “overchoice”, occurring when several - approximately equivalent
- options are available and individuals find it difficult to make a decision and
report lower choice satisfaction. Satisfaction with choices can be described as
an inverted U-shaped function of the number of options: choice satisfaction
increases as the number of options increases, but after a certain point starts
to decrease. Actually, choice overload is a debated issue and the research
has been more recently also focused on understanding why choice overload
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occurs (Chernev et al., 2015). This topic is relevant in any field where individ-
uals’ choice depends on the number of possible alternatives: for example, in
consumer research, when marketing managers must decide how many types
to include in a product line, or when retailers must decide how many brands of
the same product to place on shelves, or in public policy, when public policy
agents must decide how many and which alternatives to offer to citizens, for
example health plans (Szrek, 2017). Having more choices is advantageous
initially and variety is positive. Nevertheless, too many choices increases
complexity, that is often considered negative for choice because it can drive
individuals to delay their decision or even be indecisive. From a psycholog-
ical point of view, however, choice satisfaction is influenced not only by the
number of options: instead, it is the perceived variety that plays a crucial role
(Szrek, 2017). Unlike the number of options, perceived variety is not easy
to measure: individuals perceive easily the number of options, while the ac-
tual variety, that is the true level of variety of an assortment (for example,
assortment of a product category in a supermarket), may be difficult for indi-
viduals to perceive correctly. While the literature in marketing and consumer
research fields is more interested in revealing the relationships among per-
ceived costs, perceived benefits and choice satisfaction (both choice process
satisfaction and choice outcome satisfaction), the aim of the present study
is to apply a novel statistical approach to model perceived variety, in order
to better understand the perceptions of individuals about the variety of the
possible choice options. Like other individuals’ perceptions, perceived vari-
ety is often investigated by means of questionnaires, composed of questions
(items) with ordered response categories (ratings). The resulting rating data
can be modelled by means of several statistical methods. Among them, a
very interesting class of models, called CUB (Combination of Uniform and
shifted Binomial), has been proposed by Piccolo (2003) and D’Elia and Pic-
colo (2005). In the CUB framework, the respondents’ psychological decision
process is interpreted as a combination of two latent components, called feel-
ing and uncertainty, that express, respectively, the level of agreement with
the item being evaluated and the human indecision surrounding any discrete
choice. Thanks to a very productive research group headed by Domenico
Piccolo and their fruitful collaborations with several other researchers, CUB
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models have been applied widely and further developed and extended (see
references in Iannario and Piccolo, 2016). Among these developments, in
this paper we focus on the Nonlinear CUB model (NLCUB; Manisera and
Zuccolotto, 2014), introduced as a possible generalization of standard CUB
based on the idea that the response categories can be “unequally spaced” in
the respondents’ perception.
In this paper, we apply the NLCUB model to the real data analysed in a pre-
vious study (Szrek, 2017) focused on number of options, perceived variety
and choice satisfaction. The aim, as mentioned before, is to model the per-
ceived variety in order to deepen its understanding, by (i) providing a measure
for perceived variety, obtained by a model appropriately conceived for rating
data, (ii) adding a measure of uncertainty, (iii) giving insights to the possibly
unequal spacing among response categories in the respondents’ mind. The
paper is organised as follows. In Section 2, CUB and NLCUB models are
briefly recalled, while Section 3 describes the results and gives some con-
cluding remarks.

2. CUB and Nonlinear CUB models

CUB and NLCUB models assume that the response of each individual to
a given item with a response scale of m ordered categories is the combination
of a feeling attitude (agreement) towards the item and an intrinsic uncertainty
component surrounding the discrete choice. Both models fit rating data by
means of a mixture of two random variables (r.v.) V and U , aimed to model
the feeling and the uncertainty component, respectively.

In CUB models, the distribution probability of the discrete r.v. R generat-
ing the observed ratings r (r = 1, . . . ,m) is given by

Pr(R = r; θ) = πPr(V (m, ξ) = r) + (1− π)Pr(U(m) = r)

with θ = (π, ξ)′, π ∈ (0, 1], ξ ∈ [0, 1], and where, for a given m, V (m, ξ)

is the Shifted Binomial r.v., with trial parameter m and success probability
1 − ξ and U is a discrete Uniform r.v. defined over the support {1, . . . ,m};
1 − ξ and 1 − π are called feeling and uncertainty parameters, respectively.
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In the NLCUB model, while the uncertainty is still modelled by a discrete
Uniform, the r.v. modelling feeling is defined differently from CUB. Starting
from a given value T ≥ m − 1 and a set of values k0, k1, · · · , km, such that
0 = k0 ≤ k1 ≤ · · · ≤ km = T + 1, the discrete r.v. R generating the observed
rating r has the probability distribution given by

Pr(R = r|k0, k1, · · · , km; θ) = π
kr∑

v=kr−1+1

Pr(V (T + 1, ξ) = v)

+ (1− π)Pr(U(m) = r).

Usually, the values gs = ks − ks−1 are used, because of their easy interpre-
tation in terms of the decision process; each gs = ks − ks−1 indicates the
number of terms in the sum in the previous formula for r = s (Manisera and
Zuccolotto, 2016).

For a given g = (g1, . . . , gm)′, the previous probability distribution can be
written as

Pr(R = r|k0, k1, · · · , km; θ) = π

g0+···+gr−1∑
i=g0+···+gr−1

(
T

i

)
(1− ξ)iξT−i +

1− π
m

where g0 := 0 and T = g1 + . . .+ gm − 1.
The standard CUB model is a special case of NLCUB with T = m − 1

and gs = 1 for all s = 1, . . . ,m. Manisera and Zuccolotto (2015a, 2017)
investigated the conditions for NLCUB model identifiability and proposed
the use of the EM algorithm for parameter estimation.

An interesting feature of the NLCUB is the possibility to define the so-
called transition probabilities. It is worth recalling that the NLCUB model
is derived as a special case of a general framework proposed to describe the
Decision Process (DP) driving individuals to answer questions with ordered
response categories (Manisera and Zuccolotto, 2014). Very briefly, according
to this idea, two decision approaches coexist in the DP, the feeling and the
uncertainty approach. The final rating expressed can derive from a feeling or
an uncertainty approach, with given probabilities.

The feeling approach proceeds through T consecutive steps. At each step

72



E. Brentari et al., Modelling perceived variety

t, the individual gives a provisional rating rt, which updates the one given at
previous steps, until step T is reached: the last rating rT is the rating gener-
ated by the feeling approach. The transition probabilities are then defined as
φt(s) = Pr(Rt+1 = s+1|Rt = s), s = 1, . . . ,m−1 and describe the respon-
dents’ state of mind about the response scale used to express judgments in the
feeling approach. The decision process has been defined to be linear or non-
linear according to whether the transition probabilities φt(s) are constant on
non-constant for different t and s. A graphical representation of φt(s), called
“transition plot”, can be easily constructed (Manisera and Zuccolotto, 2014,
2016), with the response scale on the x-axis and the corresponding perceived
ratings on the y-axis. The shape (linear or not) of the resulting piecewise
linear curve indicates whether the DP is linear or nonlinear.

Starting from the transition probabilities, we can also define the expected
number µ of one-rating-point increments during the feeling path and the un-
conditional probability of increasing one rating point in one step of the feeling
path φ = µ/T . In the CUB models, the transition probabilities are constant
over t, s and equal to φt(s) = 1 − ξ, for all t, s, with s = 1, . . . ,m − 1,
t = 1, . . . ,m − 1 and φ0(1) := 1 − ξ. In addition, we also have φ = 1 − ξ
and µ = (m − 1)(1 − ξ). In other words, the CUB models imply a linear
DP and the feeling parameter 1− ξ indicates the probability of increasing one
rating point in one step of the feeling path. On the contrary, NLCUB is able
to model nonlinear decision processes, as it allows non-constant transition
probabilities, given by

φt(s) = (1− ξ)

(
t

ks − 1

)
(1− ξ)ks−1ξt−ks+1

ks−1∑
i=ks−1

(
t

i

)
(1− ξ)iξt−i

t < T, s = 1, . . . ,m− 1

with ks−1 ≤ t < T , φ0(1) := 0 if g1 > 1 and φ0(1) := 1 − ξ if g1 = 1; gs
play a fundamental role in the noncostantness of the transition probabilities.
Linear DPs can also be modelled with NLCUB, because when T = m − 1

and gs = 1 for all s, NLCUB collapses to the traditional CUB. In NLCUB,
the expected number of one-rating-point increments during the feeling path is
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given by

µ = φ0(1) + (1− ξ)
T−1∑
t=1

m−1∑
s=1

(
t

ks − 1

)
(1− ξ)ks−1ξt−ks+1

and 1 + µ is the expected rating of the feeling approach, without the effect of
the uncertainty approach. With NLCUB models, µ is used as feeling parame-
ter in place of 1−ξ, because it allows the comparison among NLCUB models
having different g, while 1− π is still the uncertainty parameter.

3. Understanding choice perceived variety: a case study

Data refer to an experiment with prescription drug plans and are available
as supplementary material of Szrek (2017) downloadable from the website of
“Judgment and Decision Making”, the journal of the Society for Judgment
and Decision Making (SJDM) and the European Association for Decision
Making (EADM). Data come from a survey involving 545 individuals, who
have been randomized to a set of 2, 5, 10 or 16 drug plan options and asked
to select one plan from the set shown to them. In addition, they were asked
to rate their perceived variety, answering the question “Do you think that the
selection should have included a greater variety of plans?”, with responses on
a 1-7 scale (1=I had too little variety; 4=I had the right amount of variety; 7=I
had too much variety), besides some other information about outcome and
process satisfaction, perceived benefits and costs, and individual characteris-
tics (gender, age, education).

NLCUB was used to model the perceived variety, separately for individuals
assigned to plans with 2, 5, 10 and 16 options. The goodness-of-fit indices are
very good for all the four models: the dissimilarity index (a normalized index
measuring the distance between the observed and the estimated frequencies)
ranges from 0.02 (5 options) to 0.12 (10 options). Figure 1 represents the per-
ceived variety in a unique representation (Manisera and Zuccolotto, 2015b):
for each of the four groups of respondents, the corresponding NLCUB is rep-
resented by a very small and stylized transition plot positioned according to
the estimated measure of uncertainty (1− π̂, x-axis) and feeling (µ̂, y-axis) in
the parameter space [0, 1)× [0,m− 1].
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Figure 1. Transition plots for 2, 5, 10 or 16 drug plan options

The different locations of the four groups on the y-axis indicate that the
perception of the amount of variety varies with the number of options: as the
number of options increase, the amount of variety perceived increase. The
estimated µ equals 1.59, 2.82, 3.81, 4.04 for the four groups with 2, 5, 10 and
16 options, respectively. As expected, respondent with few options perceived
variety being less than they wanted, while, on the contrary, respondents with
more options perceived variety being more than they wanted. We are able
to add a measure of uncertainty to this result already highlighted in (Szrek,
2017). The uncertainty (x-axis in Figure 1) associated with respondents with
16 plans is very low (0.15), while the other three groups show a moderate
level of uncertainty (0.45, 0.52, 0.44 for the groups with 2, 5 and 10 options,
respectively). Another interesting insight we can add to this results is given by
interpreting the transition plots (the non-stylized plots are not shown here due
to space constraints). The degree of nonlinearity can be measured by a nor-
malized index (Manisera and Zuccolotto, 2013) that equals 0.43, 0.44, 0.33,
0.26 in the plans with 2, 5, 10 and 16 options, respectively. The group fac-
ing only 2 or 5 options show similar convex transition plots, suggesting that
respondents find it difficult moving from category 4 to 5 and from 5 to 6. In-
deed, the majority of respondents of both groups (77% and 69%) gave a rating
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equal to or lower than 4. The main difference between the two groups is that
the mode category is 1 for the group with 2 options and 4 for the group with 5
options. This is reflected in the transition plot, showing that individuals with
only 2 options find it difficult moving also from category 1 to 2. The transi-
tion plot of individuals with 10 options shows a lower level of nonlinearity,
with a higher difficulty of moving from category 4 to 5. The transition plot
of individuals with 16 options, instead, is pretty linear, suggesting that it is
almost equally difficult (or easy, since the estimated feeling µ̂ is 4.04) moving
from one category to the next one. Further studies will be focused on the re-
lationship between perceived variety (feeling but also uncertainty measures)
on one hand and choice satisfaction (both in terms of process and outcome
satisfaction) and perceived costs and benefits on the other hand. In addition,
it could be interesting to examine the effect of individuals’ characteristics on
such relationship.
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A flexible distribution to handle response styles
when modelling rating scale data

Roberto Colombi∗ , Sabrina Giordano∗∗

Abstract: It is commonly known that the respondents to rating scale questions, when are

not aware, can select their own response using only certain response categories regardless

the item content. This behavior is described as response style. Thus, the observed response

can be a real opinion or dictated by a response style behavior. Marginal models (HMMLU)

for multivariate responses by Colombi et al., 2018, enables us to distinguish these two be-

haviors and allows to specify the distributions of uncertain responses. We extend the class

of HMMLU models with a new family of discrete distributions whose two parameters al-

low the uncertain distributions to be U-shaped, bell-shaped, unimodal, symmetric, skewed or

uniform, for capturing different response styles.

Keywords: Mixture models, Latent variables, Marginal models.

1. Introduction

Questionnaires with rating scale items are widely used in psychological,
social or marketing surveys to measure opinions, interests, or attitudes. In
such contexts, it is commonly observed that a respondent, when in doubt,
may consistently use only a few of the given options irrespective of his/her
opinion. Someone may skip the endpoints, others have tendency to mark the
extremes or the middle category (extreme or midpoint response styles), oth-
ers respond with agreement/disagreement (acquiescence) regardless of item
content, optimists may overvalue their feelings and pessimists may underrate
them (one side contraction). The term response style indicates this systematic
tendency and it is extensively debated in the literature (e.g. Baumgartner and
Steenkamp, 2001).

A family of marginal models (HMMLU) for multivariate responses has
been introduced by Colombi et al., 2018, to take into account that an ob-
∗University of Bergamo, colombi@unibg.it
∗∗University of Calabria, sabrina.giordano@unical.it
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served response can be the real respondent’s attitude (aware response) or en-
sued from a response style. An HMMLU model enables us to specify the
distribution of responses due to response styles (called uncertainty distribu-
tion) and distinguish it from that of responses dictated by awareness. Uni-
form and shifted Parabolic probability functions (Colombi et al., 2018) have
been used as uncertainty distributions in the HMMLU model. Since the pro-
posed distributions are symmetric or can cope with only one response style,
the class of HMMLU models is, in this paper, enriched by a new family of
distributions with two shape parameters. This gives the opportunity of choos-
ing among several alternatives of uncertainty distributions (U-shaped, bell-
shaped, unimodal, symmetric, skewed, uniform distributions) which capture
different response styles. Covariates are also inserted to account for individual
differences in response styles.

2. The family of shifted reshaped parabolic distributions

Remind that a probability function p(i), i = 1, 2, . . . ,m, of a discrete vari-
able withm levels can be specified by a set of local logits li, i = 1, 2, . . . ,m−
1, as shown below

p(1) =
1

1 +
∑m

j=2 exp{
∑j−1

i=1 li}
, p(i) =

exp{
∑i−1

j=1 lj}
1 +

∑m
j=2 exp{

∑j−1
i=1 li}

, i = 2, . . . ,m.

We derive a new family of distributions by a linear transformation of the local
logits of the Parabolic random variable with probability function

p(i) =
6(m+ 1− i)i

(m+ 2)(m+ 1)m
, i = 1, 2, . . . ,m.

More precisely the Local Shifted Reshaped Parabolic (LSRP) distribution
is specified by the local logits li given by the linear transformation

li = φ0 + φ1 log
p(i+ 1)

p(i)
, i = 1, 2, . . . ,m− 1.

The LSRP distribution family contains, as a special case, the Uniform dis-
tribution (φ0 = φ1 = 0), while for negative (positive) values of φ1 it is U-
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Figure 1. Local Shifted Reshaped Parabolic distributions with different shape
parameters

shaped (bell-shaped).
Thus, parameter φ1 rules the frequencies for extreme and middle points.

Specifically, high (low) values of φ1 correspond to distributions where indeci-
sion leads to focus on middle categories (extreme categories). This allows us
to describe adequately extreme and midpoints response styles. Parameter φ0

governs the skewness of the LSRP distributions. In fact, if φ0 = 0, these dis-
tributions are symmetric, right skewed for φ0 > 0 and left skewed otherwise.
Moreover, for a given φ1, LSRP distributions are monotonically ordered, ac-
cording to the likelihood ratio stochastic ordering as function of φ0. Positive
(negative) values enable to capture the acquiescence response style of respon-
dents who tend to endorse the agreement (disagreement) side of the rating
scale. Figure 1 shows some examples. Following the same reasoning, distri-
butions like LSRP can be obtained starting from other probability functions
independent from unknown parameters or using different logits. The idea of
deriving a new distribution by transforming linearly logits of a free parameter
discrete probability function is convenient when marginal models are used to
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fit ordinal data. Alternative uncertainty distributions (e.g. Tutz and Schnei-
der, 2017) could be proposed in the context of HMMLU models but with less
advantages in terms of computational ease.

3. A mixture model with LSRP uncertainty distributions

We present the simple bivariate version of the HMMLU model, introduced
by Colombi et al., 2018, in a more general extent.

Let R1 and R2 be two ordinal variables with support {1, 2, . . . ,m1} and
{1, 2, . . . ,m2}, respectively. We assume the existence of two binary latent
variables, Ul, l = 1, 2, such that the respondent answers the lth question ac-
cording to his/her awareness when Ul = 1 or his/her response style when
Ul = 0. We assume that each observable variable Rl depends only on its
latent variable Ul, l = 1, 2, and that the observable responses R1 and R2 are
independent when at least one of them is given under uncertainty. Therefore,
the joint distribution of the observable variables is specified by the mixture

P (R1 = r1, R2 = r2) = π00 g1(r1, φ01, φ11) g2(r2, φ02, φ12)

+ π01 g1(r1, φ01, φ11)P (R2 = r2 | U2 = 1)

+ π10 P (R1 = r1 | U1 = 1) g2(r2, φ02, φ12)

+π11 P (R1 = r1, R2 = r2 | U1 = 1, U2 = 1)
(1)

for every r1 = 1, 2, . . . ,m1 and r2 = 1, 2, . . . ,m2, where πij = P (U1 =

i, U2 = j), i = 0, 1, j = 0, 1, are the joint probabilities of the latent variables.
Specifically they are the probabilities that both the answers are given with
awareness (π11), both with uncertainty (π00) or one with uncertainty and the
other one with awareness (π01 and π10). Moreover, gl(rl, φ0l, φ1l), l = 1, 2,
denotes the distribution of responses under uncertainty, which here belong to
the family of Shifted Reshaped Parabolic introduced in Section 2. Finally,
P (R1 = r1, R2 = r2 | U1 = 1, U2 = 1) is the joint distribution of the
two aware responses and P (Rl = rl | Ul = 1) are the marginal ones, with
rl = 1, 2, . . . ,ml, l = 1, 2. The probabilities πij , i = 0, 1, j = 0, 1, are
parameterized through two marginal logits λl, l = 1, 2, measuring the prob-
ability of being uncertain on each specific item, plus a log odds ratio λ12.
When this parameter is positive, respondents tend to have the same behavior
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of uncertainty/awareness on the two items. A marginal parametrization is also
adopted for the joint probabilities P (R1 = r1, R2 = r2 | U1 = 1, U2 = 1). So
that, to parameterize the probabilities P (R1 = r1 | U1 = 1), and the proba-
bilities P (R2 = r2 | U2 = 1), we introduce the vectors η1, η2 of (m1 − 1)

and (m2 − 1) marginal local logits, respectively. These logits and the vector
η12 of (m1− 1)(m2− 1) local log odds ratios parameterize the joint distribu-
tion P (R1 = r1, R2 = r2 | U1 = 1, U2 = 1). As the number of parameters
is m1m2 + 7 the mixture is not identifiable without further constraints. If a
set of covariates accounts for respondents heterogeneity, identifiability can be
assured by linear models for the logits λl, l = 1, 2 and the shape parameters
φ11, φ12, parallel linear models for η1, η2 and by the assumption that φ01, φ02,
λ12 do not depend on covariates (see Colombi et al., 2018, for more details).
Useful restrictions on η12 are the conditions of homogeneous and uniform
association.

4. An example

We analyse the data from the module on health and care seeking of the
European Social Survey (ESS2 2004). Respondents are asked to reply to
questions on alternative forms of health care, such as R1 = Sex (Approve if
healthy people use medicines to improve sex life), andR2 = Happy (Approve
if healthy people use medicines to feel happier). The responses are given on
a 5-points scale (1 = “strongly approve", 2 = “approve", 3 = “Neither approve
nor disapprove", 4 = “disapprove", 5 = “strongly disapprove"). In addition,
we consider two explanatory variables: Gender (0 = “Male", 1 = “Female")
and Country (0 = “France" and 1 = “United Kindom").

We believe that the observed responses could be contaminated by some
response styles. Thus, some HMMLU models are adapted to the data at hand
in order to account for such behavior in the responses. We focus our attention
also on detecting whether the shape of the uncertainty distributions varies
according to the respondent’s characteristics.

With this aim, we fit HMMLU models specified under different hypotheses
on gl(rl, φ0l, φ1l), l = 1, 2 in model (1). The parameters are now denoted as
φGC0l , φ

GC
1l , with G,C = 0, 1, l = 1, 2 in the strata identified by the combina-

81



ASMOD 2018

tions of Gender and Country. We consider the following uncertainty distribu-
tions, U: Uniform (φGC0l = 0, φGC1l = 0, G,C = 0, 1, l = 1, 2); RP: Reshaped
Parabolic (φGC0l = 0, φGC1l = φ1l, G,C = 0, 1, l = 1, 2); SRP: Shifted Re-
shaped Parabolic (φGC0l = φ0l, φ

GC
1l = φ1l, G,C = 0, 1, G,C = 0, 1, l = 1, 2);

HRP: Heterogeneous Reshaped Parabolic (φGC0l = 0, φGC1l = β0l + βGl + βCl ,
G,C = 0, 1, l = 1, 2); HSRP: Heterogeneous Shifted Reshaped Parabolic
(φGC0l = φ0l, φ

GC
1l = β0l + βGl + βCl , G,C = 0, 1, l = 1, 2). These models are

compared in Table 1, where it is evident that modelM5 shows the best fit.

Table 1. Models Comparison

Model Unc. distr. loglik n.par. Compared Models LRT p-value

M1 U -9364.435 20
M2 RP -9198.537 22 M1 vsM2 331.795 0.0000
M3 SRP -9171.389 24 M2 vsM3 54.2966 0.0000
M4 HRP -9172.123 26 M2 vsM4 52.8283 0.0000
M5 HSRP -9155.784 28 M4 vsM5 32.6785 0.0000

In each model the probabilities to give aware answers or to have a tendency
towards a response style vary according to Gender and Country since there is
parallel additive effect of the covariates on the logits mentioned in Section 3.
The association among aware responses is assumed uniform homogeneous.

According to modelM5 respondents belonging to the four covariate groups
behave differently when uncertain. Plots in Figure 2 illustrates the uncertainty
distributions for the two items and the four strata. English respondents totally
avoid the extremes and take a shelter in the neutral category when the question
concerns the admissible use of pils to improve sex performances. In France,
instead, for the same question people seem less elusive and concentrate their
answers on the positive/intermediate side. As the matter refers happiness,
unaware people, both in UK and France, distribute their preferences quite
equally from “approve" to “disapprove". In UK, the distribution is a bit more
picked on the middle category. Extremes are not totally excluded, especially
in France. Men and women show a very similar uncertain behavior in answer-
ing both the questions.
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Figure 2. Uncertainty distributions of respondents belonging to the four
Gender-Country groups for the two items: Sex and Happy
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Joint modelling of ordinal data: a copula-based method

Marcella Corduas∗

Abstract: In this article we present an innovative technique to construct a multivariate
distribution from margins described by CUB models. In particular, we use the Plackett distri-
bution as a copula function, and we apply the discrete vine pair copula construction method to
achieve a computational efficient solution. The proposed approach will be applied to model
the importance of three key drivers of extra-virgin oil consumption in Italy.

Keywords: Copula distribution, CUB model, Plackett distribution.

1. Introduction

Likert scales are commonly used when interviewees are requested to rate
the importance of certain factors in determining their choices. This type of
data deserves special attention because the judgments may depend on covari-
ates characterizing the raters which may be clustered into sub-groups exhibit-
ing more homogeneous choices. In addition, although items are rated indi-
vidually, the judgements about connected items may be correlated. Thus, the
joint modelling of ratings could be useful for better understanding the prefer-
ences and choices of the interviewees. In this work, we present an innovative
technique for modelling multivariate ordinal data. In particular, moving from
the approach discussed by Corduas (2015), we propose to model each compo-
nent of the multivariate random variable by a CUB model. This is a univariate
mixture distribution defined by the convex combination of a discrete Uniform
and a shifted Binomial distribution that has been widely investigated in recent
years, and fruitfully applied to various fields (Piccolo, 2003). Then, we use
the Plackett distribution as a copula to estimate a bivariate distribution from
given margins. Finally, we derive the multivariate distribution by means of
the discrete pair copula construction (PCC) algorithm. This is a computa-
tional efficient procedure based exclusively on the use of bivariate copulas. In
such a way, the estimation procedure becomes feasible even when the number

∗University of Naples Federico II, corduas@unina.it
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of dimensions increases.
The plan of the article is the following. In Section 2 we introduce the model

for the marginal distribution. Then, in Section 3 we discuss the problems
related to the estimation of a joint distribution using a discrete copula. Finally,
in Section 4 the proposed technique is applied to the study of key drivers of
extra virgin olive oil consumption in Italy. Some final remarks conclude the
article.

2. The model for margins

Evaluation data originated by rating a given item can be modeled by means
of the CUB distribution (Piccolo, 2003):

Pr(X = x;θx) = πx

(
m− 1
x− 1

)
(1−ξx)x−1ξm−xx +(1−πx)

1
m
, x = 1, 2, ...,m.

where θx = (π, ξ)′ ∈ Ω(θx) and the parameter space Ω(θx) = {(π, ξ) :

0 < π ≤ 1, 0 ≤ ξ ≤ 1} is the (left-open) unit square. We will refer to this
probability mass distribution (pmf ) as X ∼ CUB(π, ξ). The model mimics
a simplified choice mechanism which is supposed to underly the moulding
of the judgements when a rater is requested to express preferences, degree of
satisfaction about a certain item or, generally speaking, the agreement with a
given statement by means of a Likert scale (Iannario and Piccolo, 2016 and
therein references). The condition m > 3 guarantees that the model is statis-
tically identifiable (Iannario, 2010). The interest for CUB model relies on its
flexibility in representing observed data by means of a parsimonious formula-
tion and on the fact that the interpretation of the estimated parameters can be
easily found. In particular, (1− πx) is a measure of the degree of uncertainty
that affects the rater’s judgements whereas (1 − ξx) describes the strength
of attraction (feeling) that the rater feels towards the item under evaluation.
Parameters may be related to explanatory variables characterizing raters by
means of a logistic link function, but this aspect will not be considered in the
present work. The model has found application to various fields of analysis,
including linguistics, social analysis, economics and medicine, and has been
extended in order to take the presence of a shelter effect, dominant prefer-
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ences, random effects of the components, "don’t know" answers into account
(for a review, see Piccolo 2018).

Some recent contributions have investigated the problem of modelling mul-
tivariate ordinal data with CUB margins (Corduas, 2011, 2015; Andreis and
Ferrari, 2013; Colombo and Giordano, 2016). In the same line, in this arti-
cle, we propose to build a multivariate distribution with given margins using
the discrete vine representation with the bivariate Plackett distribution as a
possible pair copula.

3. The joint distribution

Firstly, we briefly recall the method introduced by Plackett (1965) for con-
structing a one parameter bivariate distribution from given margins. A bivari-
ate Plackett random variable (X, Y ) is characterised by the following joint
cumulative distribution function (cdf ):

C(F (x), G(y);ψ) =
M(x, y)− [M2(x, y)− 4ψ(ψ − 1)F (x)G(y)]1/2

2(ψ − 1)
,

where ψ ∈ (0,∞). Here, F (x) and G(y) are the pre-defined marginal cdfs.
Moreover, M(x, y) = 1 + (F (x) + G(y))(ψ − 1). The parameter ψ is a
measure of association between X and Y ; specifically, ψ = 1 implies that X
and Y are independent, whereas ψ < 1 and ψ > 1 refer to negative and posi-
tive association, respectively. Although Molenberghs and Lesaffre (1994) has
introduced the multivariate Plackett’s distribution, this has had limited appli-
cability in practical situations. As matter of facts, its construction is in general
rather demanding because the computation burden increases remarkably with
the increase of the number of dimensions.

However, the bivariate Plackett’s distribution may become the building
block for constructing a multivariate discrete distribution where the scalar
variables follow a CUB distribution. Specifically, let Y = (Y1, ..., Yk)

′ be a
k-variate discrete random variable. The joint probability can be decomposed
as:

Pr(Y1 = y1, ..., Yk = yk) = Pr(Y1 = y1|Y2 = y2, ..., Yk = yk)×
Pr(Y2 = y2|Y3 = y3, ..., Yk = yk)× ....P r(Yk = yk).
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Introducing a general notation, each term on the right hand side of the above
formula is a conditional probability such as: Pr(Yj = yj|V = v) where V is
a subset of random variables in Y. Moreover, this can be written in terms of
a copula. Specifically, following Panagiotelis et al. (2012):

Pr(Yj = yj |V = v) =
Pr(Yj = yj , Vh = vh|V\h = v\h)

Pr(Vh = vh|V\h = v\h)

and

Pr(Yj = yj , Vh = vh|V\h = v\h) =∑
ij=0,1

∑
ih=0,1

(−1)ij+ihCYj ,Vh|V\h(FYj |V\h(yj − ij |v\h), FVh|V\h(vh − ih|v\h))

where FYj |V\h and FVh|V\h are the conditional cdfs and C is a bivariate copula
function. As an illustrative example, we consider the case of a three dimen-
sional variable: (Y1, Y2, Y3) where each scalar random variable Yi takes values
yi ∈ S(Yi) = {1, 2, ...,m}, m is given and the ordinal scale is such that 1 is
associated to the worst judgement and m to the best one. In addition, in or-
der to simplify the notation, whenever possible we drop the reference to the
argument of the function. Given a sample of ordinal data, (y1r, y2r, y3r), for
r = 1, 2, ...n, the estimation algorithm is summarised as follows.

1. A CUB model is fitted to each sample (yhr), for r = 1, . . . n, h =

1, 2, 3. This yields the marginal models: CUB1(π1, ξ1), CUB2(π2, ξ2),
CUB3(π3, ξ3) and the corresponding cdfs: F1, F2, F3;

2. Estimate the joint distributions using the Plackett bivariate copula C:
F12 = C(F1, F2;ψ12) and F32 = C(F3, F2;ψ32). These yield the evalu-
ation of the corresponding joint pmf P12 and P32;

3. Compute the conditional distributions: F1|2(y1|y2 = i;ψ1|2=i) and
F3|2(y3|y2 = i;ψ3|2=i), i = 1, . . . ,m;

4. Estimate the joint conditional distribution functions by means of the
copula: F13|2=i = C(F1|2(y1|y2 = i), F3|2(y3|y2 = i);ψ13|2=i), and
then, from those, the conditional pmf P13|2 for i = 1, . . . ,m ;
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5. Compute the multivariate pmf : P123 = P13|2P2.

Note that in each step at most a bivariate copula is needed. The estimation
can be performed either by means of the IFM (Inference For the Margins)
method (Joe, 1997), or by full maximum likelihood when k is rather small.
We briefly illustrate the general framework of the IFM procedure, that can
be easily particularized to the specific implementation required by the PCC
algorithm. Consider a bivariate copula-based model:

G(x, y;α1,α2, δ) = C(G1(x;α1), G2(y;α2); δ)

where G1 and G2 are univariate cdfs with parameters α1, α2 and C is a cop-
ula with parameters δ. Given a sample of i.i.d. observations {(xr, yr), r =

1, ..., n}, in the first step, the marginal models are separately estimated by
maximum likelihood to get α̂1 and α̂2. For instance, in the above PCC algo-
rithm, the CUB parameter estimates needed in (1) can be obtained using the
EM estimation algorithm illustrated by Piccolo (2006). In the second step of
the IFM approach, the function L(δ, α̂1, α̂2) is maximized over δ, being:

L(δ,α1,α2) =
n∑
r=1

log(g(xr, yr; δ,α1,α2))

the log-likelihood function for the joint distribution. Furthermore, the asymp-
totic covariance matrix can be derived from the Godambe information matrix,
or by the jackknife method as suggested by Joe (1997).

Finally, going back to the fitted joint distribution, the adequacy is assessed
by means of the pseudo-R2:

R2
CU = (1− exp(LRno/n))/(1− exp(LRmax/n)) (1)

where LRno = 2(LM − L0) and LRmax = 2(Lmax − L0), being: LM the
maximized log-likelihood value of the considered model, L0 is the value of
the log-likelihood of the null model where independence among the scalar
random variables is assumed, Lmax is the log-likelihood value of the model
with a perfect fit (Cragg and Uhler, 1970; Meinel, 2009).
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4. An empirical application: extra-virgin olive oil data

As an illustration of the proposed model, we present a study about the
perception of Italian consumers on extra virgin olive (EVO) oil quality and,
specifically, about the importance of some product attributes on purchase de-
cision. Various authors have investigated the use of the CUB distribution for
modelling ratings about food products (see, for instance, Corduas et al., 2013;
Capecchi et al., 2016; Iannario et al., 2012), but the joint modelling of con-
sumer ratings is still unexplored. In this regards, we recall that Italy is one
of the major producing and consuming countries of olive oil. However, the
factors that affect olive oil purchasing behaviour are not clear because con-
sumers are not accustomed to associate the organoleptic properties to quality
signals. Numerous contributions have investigated the liking/disliking of con-
sumers about EVO oil focusing on consumption driving factors, such as the
perceived health benefits, the importance of the region of origin, the role of
sensory cues (Dekhili et al., 2011).

The sample under study consists of ratings given by 1000 Italian con-
sumers belonging to the AC Nielsen panel (Corduas, 2015). Each interviewee
was asked to rate the importance of three EVO oil attributes (colour, taste, Ital-
ian origin) in determining his/her purchase decision on a 7 point Likert scale
(where 1 denoted "not important at all" and 7 "extremely important").

Table 1. Joint distribution of (Colour, Taste, Italian Origin) of EVO oil

Colour Taste Italian Origin
π 0.873 (0.024) 0.469 (0.007) 0.781 (0.022)
ξ 0.308 (0.015) 0.353 (0.031) 0.068 (0.005)

(Colour,Taste) (Italian Origin, Taste)
ψ12 = 3.860 (0.412) ψ32 = 1.909 (0.208)

(Colour,Italian Origin|Taste)
ψ13|2=1 = 3.881 (2.135) ψ13|2=2 = 4.221 (1.994)
ψ13|2=3 = 6.308 (2.265) ψ13|2=4 = 2.714 (0.690)
ψ13|2=5 = 2.836 (0.858) ψ13|2=6 = 2.864 (0.777)
ψ13|2=7 = 4.913 (1.572)

Lmax = −4412.90 LM = −4709.56 L0 = −6034.39 R2
CU = 0.96

Note: standard errors in parentheses
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Figure 1. Observed cumulative frequencies vs estimated cumulative probabil-
ities

Since there are only few pairs of copula in a three-dimensional model, it is
possible to estimate all possible models (by changing the conditioning vari-
able), and select the model that achieves the best fit. In Table 1, we report
the results obtained by the IFM method with the jackknife for the estima-
tion of standard errors. The judgements about colour and taste are positively
correlated, and although in a lower extent, the same consideration applies to
taste and Italian origin of the olives. This is probably due to the fact that
consumers easily recognise attributes perceived through senses with respect
to other features. The judgements about the three considered attributes are
well fitted by the joint multiple distribution as shown by the high value of the
fitting measure and the plot of the observed cumulative frequencies against
the fitted cumulative probabilities (Figure 1).

In conclusion, the approach seems to achieve meaningful results useful for
marketers that need to know the product features that are most closely related
to actual purchase decisions in order to build effective marketing strategies.

References

Andreis F., Ferrari P. (2013) On a copula model with CUB margins, QdS. Journal of Method-
ological and Applied Statistics, 15, 33-51.

Capecchi S., Endrizzi I., Gasperi F., Piccolo D. (2016) A multi-product approach for detect-
ing subjects’ and objects’ covariates in consumer preferences, British Food Journal,
118, 515-526.

91



ASMOD 2018

Colombi R., Giordano S. (2016) A class of mixture models for multidimensional ordinal
data, Statistical
Modelling, 16, 322-340.

Corduas M. (2011) Modelling correlated bivariate ordinal data with CUB marginals, Qua-
derni di Statistica, 13, 109-119.

Corduas M. (2015) Analyzing bivariate ordinal data with CUB margins, Statistical Mod-
elling, 15, 411-432.

Corduas M., Ievoli C., Cinquanta L. (2013) The importance of wine attributes for purchase
decisions: a study of Italian consumers’ perception, Food Quality and Preference, 28,
407-418.

Cragg J.G., Uhler R.S. (1970) The demand for automobiles, Canadian Journal of Eco-
nomics, 3, 386-406.

Dekhili S., Sirieix L., Cohen E. (2011) How consumers choose olive oil: The importance of
origin cues, Food Quality and Preference, 22, 757-762.

Iannario M. (2010) On the identifiability of a mixture model for ordinal data, METRON,
LXVIII, 87-94.

Iannario M., Piccolo D. (2016) A comprehensive framework of regression models for ordi-
nal data, METRON, 74, 233-252.

Iannario M., Manisera M., Piccolo D., Zuccolotto, P. (2012) Sensory analysis in the food
industry as a tool for marketing decisions, Advances in Data Analysis and Classifica-
tion, 6, 303-321

Joe H. (1997) Multivariate Models and Dependence Concepts, London: Chapman & Hall.
Meinel N. (2009) Comparison of performance measures for multivariate discrete models,

Advances in Statistical Analysis, 93, 159-174.
Molenberghs G., Lesaffre E. (1994) Marginal modelling of correlated ordinal data using

multivariate Plackett distribution, Journal of the American Statistical Association, 89,
633-644.

Panagiotelis A., Czado C., Joe H. (2012) Pair copula constructions for multivariate discrete
data, Journal of the American Statistical Association, 107, 1063-1072.

Piccolo D. (2003) On the moments of a mixture of Uniform and shifted Binomial random
variables, Quaderni di Statistica, 5, 85-104.

Piccolo D. (2006) Observed information matrix for MUB models, Quaderni di Statistica, 8,
33-78.

Piccolo D. (2018) A new paradigm for rating data models. Palermo: Proceedings of 49th
Scientific Meeting of the Italian Statistical Society, 1-12.

Plackett R.L. (1965) A class of bivariate distributions, Journal of the American Statistical
Association, 60, 516-522.

92



Modeling preferences: beyond the average effects

Cristina Davino∗ , Tormod Naes∗∗ , Rosaria Romano∗∗∗ ,
Domenico Vistocco∗∗∗∗

Abstract: Preference mapping are a collection of multivariate statistical techniques widely

used by marketing and R&D divisions to understand which sensory characteristics drive con-

sumer acceptance of goods. These techniques provide a perceptual map of the products based

on the so-called sensory dimensions, on which the liking values for each consumer are re-

gressed. This study proposes an innovative preference mapping based on the quantile regres-

sion. Using the quantile regression instead of the classical least squares regression allows to

explore the whole distribution of the consumer preference. This permits to obtain additional

information both at the individual consumer level, analyzing how the preference varies with

respect to the different quantiles and at the general level, highlighting on the preference map

consumers with homogeneous behaviors with respect to the different quantiles.

Keywords: Preference mapping, Rating data, Quantile regression.

1. Preference mapping

Preference mapping is a collection of multivariate statistical techniques
that aim to analyze consumer acceptance of food and beverages products
(Meilgaard, Civille, Carr, 2007). There are two different types of these meth-
ods, namely internal preference mapping and external preference mapping
(Meullenet, Xiong, Findlay, 2008). Internal preference mapping uses con-
sumer acceptance ratings to determine a multidimensional representation of
products and consumers in a common space. External preference mapping
(PREFMAP) uses sensory descriptive attribute ratings to obtain a multidi-
mensional representation of products, sensory characteristics and consumers
in a common space. PREFMAP is crucial to the food and beverages indus-
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tries to understand which sensory characteristics drive consumer acceptance
of goods. This information is used by marketing and R&D divisions to adapt
existing products or create new products that meet consumers’ expectations.
The most common PREFMAP method consists of a two step procedure that
combines principal component analysis (PCA) and least squares regression
(LSR) (Naes, Brockhoff, Tomic, 2010). In the first step a perceptual map of
the products is obtained through a PCA of the product-by-attribute sensory
matrix, and the principal components obtained from the analysis are called
key sensory dimensions (Meilgaard, Civille, Carr, 2007). In the second step,
a regression model is used to fit each consumer in the perceptual space. The
main assumption is that the preference of each consumer depends linearly on
the sensory attributes. Furthermore, as the method is grounded on LSR, it
focuses on the average effects of sensory dimensions.
In some situations it is also useful to study the whole distribution of the liking.
At this aim, quantile regression (QR) (Koenker, 2005; Davino, Furno, Vis-
tocco, 2013) can be used to provide an estimate of conditional quantiles of the
dependent variable instead of conditional mean. QR was recently used in con-
sumer study for relating liking to consumer factors (Davino, Romano, Naes,
2015), and for handling consumer heterogeneity (Davino, Romano, Vistocco,
2018). The aim of this study is to extend the use of QR to the PREFMAP
in order to provide additional information, not only about how the sensory
dimensions link to consumer preference on average. The classical approach
to PREFMAP based on the LSR does not allow to distinguish consumers able
to discriminate preferences among products from consumers with uniform
liking. The use of QR is advisable to highlight precise consumers, that is con-
sumers with a strong difference in the liking pattern. Applying the classical
approach would obscure this information, treating uniform consumers alike
the precise ones.
The study is structured as follows: i) the classical approach to PREFMAP
based on LSR is presented in Section (2); ii) a new approach based on QR is
described in Section (3); iii) results of the proposed method on a case study
concerning consumer liking of apple juice are shown in Section (4).

94



C. Davino et al., Modeling preferences beyond the average effects

2. External preference mapping by least squares regression

Let X be the sensory matrix (I ×K), where the entry xik is the measured
value of product i and sensory attribute k (i = 1, . . . , I; k = 1, . . . , K). The
PCA model to develop a perceptual map based on the sensory characteristics
can be written as

X = TP T + E (1)

where T is the matrix (I × A) of the principal component scores that are
linear combinations of the original data X , and P is the matrix (K×A) of the
loading values that define the contribution of each of the original variables
in the computation of the principal components. The matrix E represents
random noise and A is the number of components included in the model.

Let Y be the liking matrix (I × J), where the entry yij is the measured
value of product i and consumer j (j = 1, . . . , J). The liking values for each
consumers are regressed onto the first sensory dimensions, generally the first
two PC’s (i.e., A = 2):

yij = βj1ti1 + βj2ti2 + εij (2)

The final results of this two step procedure provide a perceptual map and
a loadings plot. In the first, products are located on the basis of the sensory
characteristics, while in the second consumers’ preferences are visualized and
the direction for their preferences are identified.

3. External preference mapping by quantile regression

QR can provide complementary information to the classical PREFMAP. At
this aim, it is introduced in the second step of the previously described proce-
dure, when liking for each consumer is related to the first sensory dimensions.
As classical linear regression provides the estimation of the conditional mean
of a response variable distribution as a function of a set of predictors, QR
provides the estimation of the conditional quantiles of a response variable
distribution as a function of a set of predictors. It results that Equation (2) can
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be generalized to the QR framework as:

yij(θ) = βj1(θ)ti1 + βj2(θ)ti2 + εij (3)

where (0 < θ < 1). The interpretation of the QR coefficients is analogous to
LSR coefficients: they measure the rate of change of the θth quantile of the
dependent variable distribution per unit change in the value of a given pre-
dictors, holding the others constant. It is potentially possible to estimate an
infinite number of regression lines, but in practice a finite number is numeri-
cally distinct, which is known as the quantile process. In practice, it is quite
common that each researcher defines the quantiles of interest which, in most
cases, are the three quartiles. For each quantile of interest, a regression line is
estimated and, consequently, a set of coefficients and a fitted response vector
can be obtained.

With respect to each consumer, the introduction of QR in PREFMAP pro-
vides a set of coefficients for each quantile of interest. This information al-
lows to measure what is the impact of a change in the sensory dimensions
on the liking for the most and least preferred products. Note that consumers
showing large differences between coefficients at two extremes quantiles cor-
respond to consumers with a precise liking pattern. With respect to the whole
panel of consumers, QR allow to obtain a consumer loading plot that visual-
izes groups of consumers who are similarly affected by a given change on the
sensory dimensions. In the case study section, it is also suggested a conjoint
representation able to simultaneously represent results related to two opposite
quantiles (e.g θ = 0.25 and θ = 0.75).

4. Case study

The data used for this study have been obtained from the article by Rdbotten
et al. (2009). Apple juice samples were selected according to an experimental
design (a 2∗3 factorial design) with two levels of acid concentration (H=high,
L=low) and three levels of sugar concentration (H=high, M=medium, L=low).
The 6 samples were tested by 125 consumers using the 9-point hedonic scale
(Peryam and Pilgrim, 1957). Descriptive sensory analysis was also carried
out, and details of the procedure are given in (Rdbotten et al., 2009). Results
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from classical PREFMAP are given in Figure (1). A joint interpretation of the
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Figure 1. External preference mapping results

two plots shows that almost all consumers prefer sweet products, but some
of them prefer products with high acid content, while the others prefer a low
acid content. Note that products were evaluated both for flavor (descriptors
labelled in capital letters) and smell (descriptors labelled in lower case).

4.1. Exploiting QR for single consumers

Consider estimating a QR model for each individual consumer and for a
set of quantiles of interest, that is the three quartiles (θ = [0.25, 0.5, 0.75]).
Three sets of coefficients are then estimated for each consumer. Figure 2
shows QR coefficients for two consumers, namely C27 (left-hand plot) and
C49 (right-hand plot). For each plot, each panel represents a single regression
coefficient (for sake of brevity, the the intercept is not shown). The horizontal
axis displays the different quantiles, while the effect of each regressor holding
the other constant is represented on the vertical axis. Standard errors and
confidence intervals can also be added to the graph. For consumer C27 the
two PCs have a different impact on the liking of C27: the coefficients β1

are always higher than coefficients β2 that are even negative. As discussed in
Section (3), a regression coefficient at a specific quantile provides information
of the effect of predictors on the selected conditional quantile of the liking

97



ASMOD 2018

distribution. For instance, C27 shows a β(0.25) equal to 0.5 while the β(0.75)

is larger. This means that the effect of the predictors on the conditioned upper
part of the liking distribution is stronger: increasing the level of sweetness
(positive verse of PC1) increases more the preference for the most preferred
products than for the less liked ones. Considering the lines related to the β1

coefficients, it results that, modifying the sensory attributes explaining the
first PC, has always positive impact on the liking of C27 but, moving from
lower to higher quantiles, the effect of PC1 on liking increases showing that
the most preferred products could take more advantage of an increment of
the sensory attributes correlated to PC1. The opposite holds for β2. Figure 2
(right-hand side) shows results for another consumer (C49). Here, the sensory
dimensions not only have a different size compared to the different quantiles,
but also a different sign. An increase in the level of sweetness (PC1) would
increase the preference for the less preferred products (θ < 0.50), while it
would reduce the preference for the most preferred ones (θ = 0.75).

C27

β̂1
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β̂2
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Figure 2. QR coefficients for single consumers

4.2. Exploiting QR for the whole panel

One of the main strengths of preference mapping is to suggest possible
drivers to increase the liking, taking into account that whatever action will
have different impacts on different groups of consumers.

Exploiting the proposed quantile approach, a further representation is pro-
posed to simultaneously provide QR results at the two extreme considered
quantiles. Figure 4 represents a group of 11 consumers. They have been se-
lected as sample consumers because they shows different behaviors. Each
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Figure 3. QR loading plot considering two extreme quantiles

consumer is represented according to the β1 and β2 coefficients estimated at
the two quantiles. The two points representing each consumers are linked by
an arrow depicted in the direction from θ = 0.25 to θ = 0.75. Considering
consumer number 57 (from now C57), it is possible to appreciate that both
coefficients related to PC1 and PC2 are positive but any action on the vari-
ables correlated to them will have a higher impact on the liking of the less
preferred products. Arrows crossing two quadrants represent consumers with
non-concordant signs at θ = 0.25 and θ = 0.75. It is the case of consumer
C49, previously discussed. It is worth to note that consumers able to dis-
criminate preferences among products are represented by a longer arrow, than
consumers with uniform liking.

Finally, a plot that combines the results of the LSR and QR approach to
PREFMAP is shown in the Figure (4). The different symbols correspond to
all the different possible directions for the arrows in the previous plot. Specif-
ically, the symbols corresponding to two equal numbers indicate consumers
who are located in the same quadrant since coefficients of the two quantiles
with respect to the two components have the same signs. For instance, con-
sumer C27 included in the (4,4) group, has β1 coefficients both positive for
the two quantiles, and β2 both negative. While consumer C49, included in the
(1,2) group, has coefficients at θ = 0.25 in the first quadrant and coefficients
at θ = 0.75 in the second quadrant. The information provided by this plot
is very important because it allows to visualize the variability of preferences
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Figure 4. Loadings plot combining LSR and QR approach

with respect to preference directions. As an example, if we consider the di-
rection of maximum preference, i.e. consumers in the first quadrant, we note
that not all of them have coefficients consistent with the different quantiles.
Consumers labeled with a cross show discrepancies. For a detailed analysis
of these discrepancies we must then consider the arrows plot in Figure (4).
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Exploring synergy between CUB models and quantile regression:
a comparative analysis through continuousized data

Cristina Davino∗ , Rosaria Simone∗∗ , Domenico Vistocco∗∗∗

Abstract: The paper investigates a parallel between CUB models and quantile regression

through an illustrative case study on rating data. While CUB models have been proposed

for modeling ordinal variables, quantile regression is mostly convenient for quantitative re-

sponses. The goal is to advance a comprehensive approach in which discrete ordinal out-

comes on one hand and their continuousized version on the other coexist so to take advantage

of two modern modeling frameworks.

Keywords: CUB models, Quantile Regression, Continuousized data.

1. Introduction and Motivation

The generalization of empirical findings from average is one of the factors
that generates the common sense of diffidence about Statistics in the layman.
It is efficiently described in the flaw of averages: “plan based on the assump-
tions that average conditions will occur are usually wrong” (Savage, 2002).
The focus on the mean is a widespread approach even among insiders, since
most applied Statistics is related to the estimation of average effects. The sen-
tence that introduces regression in the book of Mosteller and Tukey (1977)
is a clear invitation for insiders to go beyond the mean: “Just as the mean
gives an incomplete picture of a single distribution, so the regression curve
gives a correspondingly incomplete picture for a set of distributions”. The if
and how the insiders have welcomed (and will welcome) this invitation can
help to dissipate layman’s mistrust in statistical tools. The flaw of averages
is becoming increasingly important in recent times because of the huge data
dimension and of the complexity of the relationships among the data itself
(Aguilar, 2018).
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In this framework, Quantile Regression (QR), which was introduced as far
back as 1978 (Koenker and Basset 1978), can be revitalised and regarded as
one of the most modern and challenging methods in the era of big data. QR is
based on the estimation of a set of conditional quantiles of a response variable
as a function of a set of covariates. The method allows to verify if the effect
played by the regressors varies on the low, middle and upper parts of the de-
pendent variable thus suggesting different interpretation paths and revealing a
scale and/or shape effect (Davino et al. 2014). If on one hand QR can be con-
sidered complementary to classical ordinary least squared regression (OLS),
on the other hand the method represents a proper and suitable option when
the homoschedastic assumption of the classical regression model cannot be
satisfied, if the dependent variable has a skewed distribution or in presence of
outliers. Nevertheless QR and the implied interpretation are not always suit-
able for ordinal data analysis, especially in cases where the response is on a
finite discrete support and with a low number of possible answers. This is very
common in survey data where the number of categories typically ranges from
5 up to 10 and thus a straightforward quantile modeling can raise some issues
being not always greatly informative. In this respect, a manyfold perspec-
tive can be adopted with CUB models (D’Elia and Piccolo, 2005). The main
feature of this class of models is the parsimonious yet flexible specification
of both perceptual and decisional aspects of the rating process as a mixture
of feeling and uncertainty directly on the measurement scale (Piccolo et al.,
2018). Thus, both QR and CUB models are appealing statistical frameworks
for the analysis of evaluation–type data, for continuous and ordinal responses
respectively. This contribution aims to investigate the connection between the
two approaches. A combined analysis of CUB models and QR can be pursued
if continuous variables are collected and then discretized, or conversely if gen-
uine ordinal outcomes are continuosized. We opt here for the latter strategy,
exploiting a solution proposed by Tamhane et al. (2002). In particular, let R
be an ordinal variable collected on a rating scale coded with integers 1, . . . ,m

(m > 3). If nj is the observed cell count for R = j, then continousized data
in [0, 1] can be obtained by uniformly spreading such observation in the inter-

val
(j − 1

m
,
j

m

]
to be then rescaled in the interval [1,m]. The approach can
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be easily adapted in case categories are not equally spaced. In the following
a brief introduction of the two methods, CUB and QR, along with remarks
on their possible integrated use will be provided through an illustrative case
study on rating data.

2. CUB and QR in a nutshell

For quantitative variables measuring latent traits like happiness, social be-
haviors, self-evaluations, and so on, it is often preferable to pursue a dis-
cretization to summarize the phenomenon into ordered categories. Since in
these cases it is of primary importance to understand the psychological mech-
anism driving the response process, the framework of CUB models offers
advantageous interpretation of results by allowing a combined modeling of
perceptual and decisional aspects of the choice. The rationale of this class
of models is that each respondent has a propensity to provide a deliberate
answer which is unavoidably mixed with the indeterminacy produced by the
discretization of the latent trait. As an extreme circumstance, such indetermi-
nacy collapses to a random choice. Thus, if Ri is the rating response given by
the i–th subject and collected on a rating scale coded with integers 1, . . . ,m

(m > 3), then a two-component mixture is specified between a shifted bino-
mial and a discrete uniform distribution:

Pr
(
Ri = r | πi, ξi

)
= πi

(
m− 1

r − 1

)
ξm−ri (1− ξi)r−1 + (1− πi)

1

m
,

logit(πi) = β
′
yi, logit(ξi) = γ

′
wi,

where yi, wi are subjects’ covariates specified to identify response profiles.
The parameter ξi is referred to as the feeling parameter since 1− ξi measures
the preference of a category over the lower ones in a sequence of pairwise
comparisons among categories. The mixing weight πi, instead, is called the
uncertainty parameter since 1 − πi measures the overall uncertainty of the
respondent’s assessment: then, in particular, the larger it is, the higher the
overall heterogeneity in the response distribution. ML estimation of param-
eter can be implemented by running the EM algorithm, and significance of
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variables’ effects can be checked according to Wald test (Piccolo, 2006).
Quantile regression has been instead proposed to model the whole conditional
distribution of a response y given a set of p covariates X, data observed on
n units. Although models to deal with binary, nominal and categorical re-
sponses recently appeared in literature, QR is mostly used in case of numeri-
cal responses. In this paper we restrict our consideration to the case of linear
effects. In such a case, QR estimates separate linear models for different
quantiles θ ∈ [0, 1]:

yi(θ) = β0(θ) + x>i β(θ) + εi, (1)

such that P (εiθ ≤ 0) = θ and i = 1, . . . , n. The separate models are in-
terpretable in terms of regression models for the quantiles of the response.
The conditional distribution of the response can be estimated using a dense
set of conditional quantiles. QR is distribution free since it does not pose any
parametric assumption for the error (and hence response) distribution. The co-
efficients are commonly estimated through a variant of the simplex algorithm,
while interior–point methods are especially suitable to deal with large scale
problems (Koenker, 2005). Alternative estimators have been recently pro-
posed exploiting the asymmetric Laplace distribution as a convenient model
for the error distribution, thus allowing to embed QR in the likelihood frame-
work and to extend it in a bayesian approach (Furno, Vistocco, 2018). As
regards inference, QR estimators are asymptotically normal distributed with
different forms of the covariance matrix depending on the model assumptions;
resampling methods being a valid and widespread option.

3. The case study on relational goods and leisure time

The combined analysis between CUB models and QR will be discussed on
the basis of a self-evaluation of the family making ends meet collected during
a survey at University of Naples Federico II in December 2014. The purpose
of the survey was to carry out an observational study on relational goods and
activities for leisure time. Questionnaires were filled by students who were
in turn asked to administer it also to acquaintances of theirs, according to a
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snowball sampling scheme. Every participant was asked to evaluate family
end meet (from now, EndsMeet) on a 10-point Likert scale, ranging from 1
= ‘never, at all’ to 10 = ‘always, a lot’. In the end, a sample of n = 2181

observations is considered. The goal is investigating the effects that the fol-
lowing covariates have on EndsMeet: Child and Residence, two dichotomous
factors respectively with level 1 if there is any child aged less than 12 in the
family and if the respondent lives in Naples or in its province. The solution
proposed by Tamhane et al. (2002) has been used to transform the ordinal
variable EndsMeet into continuousized data, so to use it as response variable
in the QR model. Figure 2 (left-hand side) shows the observed frequency
distribution of EndsMeet, with the kernel density of the corresponding con-
tinuousized data superimposed. The distribution of continuousized EndsMeet
in the categories of the two covariates is shown in the right-hand part of Fig-
ure 2. The distribution of the response variable appears asymmetric in the
group of families with at least one child less than 12 years old. It is worth
of mention that just 20% of the interviewed belongs to this category and that
almost 74% lives in Naples or in its province. The complete dataset with de-
tailed description of all the collected variables is loaded within the R package
CUB (Iannario et al., 2018), which has been used for CUB models, tests and
validation; for quantile regression, the R package quantreg (Koenker, 2018)
has been used.

3.1. A parallel between CUB and QR results

The simplest QR model with a dichotomous regressor can help in testing
the synergy between QR and CUB. Table 1 (first block of rows) reports the
OLS and QR coefficients at five chosen quantiles, θ=[0.1, 0.25, 0.5, 0.75, 0.9]
in a model with only Child as regressor. Either the OLS and the QR coeffi-
cients are significant with p-values less than 0.001 (standard errors have been
estimated through resampling methods). but QR integrates results provided
by classical regression. For example, having children less than 12 years old
negatively impacts on the capability to get end of the month but this effect is
higher on the lowest part of the distribution (at the 10% percentile is almost
twice the average effect) and it becomes negligible and not significant on the
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Table 1. OLS and QR estimated parameters for the two considered models

OLS θ = 0.1 θ = 0.25 θ = 0.5 θ = 0.75 θ = 0.9

Child β̂0 6.33 3.08 5.01 6.57 7.96 9.11
β̂1 -0.45 -0.88 -0.68 -0.52 -0.27 -0.10

Residence β̂0 0.60 0.22 0.45 0.64 0.79 0.91
β̂1 -0.03 -0.02 -0.02 -0.04 -0.04 -0.03

highest part of the distribution (estimating a much more dense of quantiles, it
results that the lowest slope is equal to -1.14 and the highest to 0.006). Thus,
there is evidence for heterogeneity of effects of the regressor along the mea-
surements scale. This claim is fully supported by inspecting CUB regression
fit to the ordinal data (BIC = 9689.38):

logit(1−π̂i) = 0.100
(0.099)

+0.687
(0.256)

Childi, logit(1−ξ̂i) = 0.694
(0.040)

− 0.255
(0.114)

Childi.

As a result, responses are more heterogeneous in case there is a child aged less
than 12 years in the family (uncertainty importance in the sense of weight for
the uniform distribution increases from 1 − π̂0 = 0.529 to 1 − π̂1 = 0.697

when switching from Child = 0 to Child = 1, whereas perceived easiness
in making ends meet (as measured by 1− ξ̂i) decreases from 0.668 to 0.617.

A further investigation of the synergy deriving from a conjoint use of QR
and CUB is realised using the second regressor, Residence, which is dichoto-
mous too but with a different impact on the response variable. Indeed, it
affects only the location of the distribution being statistically significant only
for the feeling component (as evident also from the right panel of Figure 3):

1− π̂ = 0.557
(0.022)

, logit(1− ξ̂i) = 0.873
(0.084)

− 0.281
(0.094)

Residencei

Specifically, being resident in the metropolitan area of Naples decreases (per-
ceived) easiness in making ends meet. The constant uncertainty level given
Residence gains insight when looking at QR results on the continuousized re-
sponse: the impact of living in Naples or in its province is negative but almost
constant along the distribution (see second block of rows in Table 1). More-
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Figure 1. Rating data and continuousized version for the rating: Do you
easily make ends meet? (left). Boxplot for the continuousized version given
Child and Residence (right))
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over, this effect is related to very high standard errors in the lowest part of the
distribution.

4. Conclusions and future research

The paper has advanced a comparative application of quantile regression
methods for quantitative responses and CUB models for rating data: contin-
uousized data allows to switch from one setting to the other with the goal of
understanding mutual advantages, analogies and differences of the two ap-
proaches. Particular emphasis has been given to the interpretation of uncer-
tainty and heterogeneity of regressors’ effects. In this vein, future research
developments can be outlined by simulation studies and more challenging
empirical evidence.
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A Poset based indicator of gender equality at sub-national level

Enrico di Bella∗ , Lucia Leporatti∗∗ , Filomena Maggino∗∗∗ ,
Luca Gandullia∗∗∗∗

Abstract: Gender equality represents a central issue in the socio-economic background of

our society and, consequently, its study is gaining increasing attention in the international

debate. During the last 20 years, the international literature proposed a number of indica-

tors that aim at measuring gender equality but there are few experiences of gender equality

indicators at sub-national level. The aim of this work is twofold: on one hand we propose

a regional decomposition of the European Institute for Gender Equality index (R-GEI); on

the other we compare the synthetic indicator obtained following the EIGE methodology with

a poset based synthetic indicator (POR-GEI). The new R-GEI is obtained reproducing the

EIGE methodology, and it is compared to the POR-GEI index that exploits poset theory for

aggregating indicators.

Keywords: EIGE, Gender equality, Poset.

1. Introduction

The interest for gender inequality in several areas of life is increasingly
at the center of the international debate given its strong socio-economic im-
plications. Much effort has been devoted to the identification of appropriate
ways to measure gender inequality and, with this aim, over the years various
composite indicators have been proposed internationally. The three most rel-
evant solutions fit for the purpose can be identified in the Global Gender Gap
Index of the World Economic Forum (WEF, 2017), in the Gender Develop-
ment Index (GDI) proposed by the United Nations (UNDP, 2017) and in the
Gender Equality Index (GEI) of the European Institute for Gender Equality
(EIGE, 2017a, b). Although having some common features, the three indica-
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tors differ from a number of issues. First, there is not a full overlapping in
the variables selected to describe the domains and in the domains themselves
since this choice inevitably depends on the actual availability of data. In ad-
dition, the indicators differ substantially for weighting and aggregation pro-
cedures. Despite the undeniable effort devoted to the identification of proper
indicators, a relatively unexplored topic concerns the evaluation of gender
inequality at a sub-national level. This perspective may be particularly inter-
esting in a country like Italy characterized by persistent regional disparities in
terms of economic development, population structure and size. According to
last available GEI data (year 2015), Italy ranks 14th among the EU28 coun-
tries for gender equality, with a GEI value equal to 62.1 compared to a EU28
average of 66.2. Although some studies have been proposed to analyze gender
inequality in Italy at the sub-national level, these are mostly referred to spe-
cific areas of the country and there are no systematic attempts to measure the
phenomenon under a comprehensive perspective. One of the reason for this
lack, is ascribable to the paucity of publicly available indicators at a NUTS2
level. This study is a preliminary work aimed at proposing a method to break-
down at sub-national level the Italian GEI index computing regional indices
as faithful as possible to that produced by EIGE. The decision to select EIGE
indicator among the pool of available ones is explained by its completeness
(compared to the other two mentioned above) in terms of domains and vari-
ables. In addition most of the variables used in GEI are based on European
surveys (mainly EU-SILC and Labor Force Survey) that guarantee a territo-
rial detail representative at a NUTS-2 level. For variables that can not be used
at NUTS-2 level due to a low representatives of survey data or to their weak
meaning at a regional level (think for example to the number of women in
Parliament), alternatives are proposed trying to be as much coherent as pos-
sible with the original meaning of replaced variables. The resulting regional
gender equality (R-GEI) for Italy is then analyzed in a partially ordered sets
(posets) approach (e.g.: Fattore, 2018) to introduce an additional method to
define a composite indicator of gender equality at regional level.
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2. Data and methods

In order to build the two alternative regional gender equality indicators we
followed three main steps:

1. assessment of the original GEI variables in terms of data sources
and relevance at a regional level. This step has been structured in two
activities: a) computation of single indicators at a NUTS2 level using
GEI survey microdata (when representative), alternative surveys (when
original surveys are not representative) or other official databases; b)
substitution of meaningless variables with others more consistent with
the regional perspective;

2. R-GEI computation: use of the GEI methodology (third edition) to
build the R-GEI;

3. POR-GEI computation: use of the poset methodology (third edition)
to build the POR-GEI.

The next sub-sections will briefly describe each of the three steps.

2.1. Indicators for the regional gender equality index at sub-national level.

EIGE’s GEI is based on 6 core domains (Work, Money, Knowledge, Health,
Time and Power), 14 sub-domains and 31 variables and it ranges from 1 (i.e.
total inequality) to 100 (i.e. full equality). The variables employed for the
computation of GEI come from different data sources. For what it concerns
survey datasets, the four sources used are: Labor Force Survey (LFS); Euro-
pean Union Statistics on Income and Living Conditions (EU-SILC); European
Health Interview Survey (EHIS) and European Working Conditions Surveys
(EWCS). The first three surveys are provided by Eurostat and their sample
size and scheme guarantee the representativeness at a NUTS2 level. The LFS
is mainly used to fill in the domains of Work and Knowledge. The EU-SILC
survey is instead used in the fields of Money and Health while EHIS is used
to assess Health. The EWCS survey is instead developed by Eurofound and it
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is mainly used to address the issue of Time. However, the number of observa-
tions sampled for EWCS is not sufficient to obtain reliable regional estimates
(1,402 observations for all Italy). Therefore, most of the regional variables
connected to this domain will be based on the ISTAT survey "Aspects of daily
life". Another domain that requires a significant revision is that of Power:
indeed, under a regional perspective, most of the original indicators lose their
relevance. As a consequence, the variables connected to Political Power have
been replaced by more local/regional measures such as the share of women
in regional boards, municipality and regional assessors, city majors (source:
Italian Ministry of Interior). Also the variables connected to Economic Power
has been revised due to the unavailability of original EIGE data at a NUTS2
level (source of new data: INPS). No alternatives have instead been found for
the sub-domain of Social Power. Given these premises, after the adjustments,
10 out of the 31 original variables are exactly based on GEI definition and
data, 15 are instead based on a definition as close as possible to that adopted
in GEI but using data representative at a regional level.

2.2. The regional level Gender Equality Index (R-GEI).

After selecting the relevant indicators, we have followed the EIGE method-
ology to build up the regionalised composite indicator. In particular, as sug-
gested by EIGE (2017b) we started with the computation of gender gaps
(Υ(xit)) that measures the gaps between men and women for each variable
X and for the i-th region and the t time period as:

Υ(xit) =

∣∣∣∣X̄W
it

X̃a
it

− 1

∣∣∣∣ (1)

where X̄W
it represents the value of the X variable for women and X̃a

it is
the average unweighted values of men and women. In order to interpret the
measure as gender equality and not as gender gaps, the second step consists
in taking the complementary of the gaps 1− (Υ(xit)).

In addition, a correction coefficient (α(xit)) is applied to take into account
both gender gaps and the overall level of achievement. The correction proce-
dure is developed by comparing, for each variable, the performance of each
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region with the best performance recorded:

α(xit) =

(
X̃T
it

max(X̃T
it )

)1/2

(2)

As a consequence, the higher the gender gaps and the higher the distance
form the best performing region, the lower would be the final value for the R-
GEI. The resulting indicators, for each variable and region are then computed
as follows:

Γ(xit) = 1 +
[
α(xit) ·

(
1−Υ(xit)

)]
· 99 (3)

The last part of the procedure consists in the weighting and aggregation
of the variables, sub-domains and domains in one composite indicator. The
aggregative procedure suggested by GEI operates through various steps (see
EIGE, 2017b, for details), the last one of which is the aggregation of do-
main specific indicators in one composite indicator using a weighted geomet-
ric mean with a weighting scheme defined by experts (Work = 0.19; Money =
0.15; Knowledge = 0.22; Time = 0.15; Power = 0.19; Health = 0.10).

2.3. The poset based regional level Gender Equality Index (POR-GEI).

The poset approach to build synthetic indicators keeps all the information
inherent to each indicator separate from the other resulting in synthetic in-
dicators that are not aggregative in nature (Fattore, 2018; di Bella, 2018).
The units of analysis of posets are not the elementary indicators but the vec-
tors of values of each indicator for any single statistical unit, called profiles.
Poset theory focuses on the concept of comparability or incomparability be-
tween couples of profiles. Two profiles are comparable when the values of
the indicators of one profile are not lower (or, vice versa, not bigger) than
the corresponding values of the other profile; on the contrary, if at least one
is bigger (or lower), then the two profiles are claimed to be incomparable.
The visual representation of a (finite) poset is generally made by means of the
diamond scalogram or Hasse diagram, a graph in which profiles are graphed
vertically in levels that define their relative position in the ordering; those pro-
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files which cannot be directly compared are positioned on the same level of
the graph and they are not directly connected. The Hasse diagram is not only
a graphical output for poset analysis but also, through its linear extensions,
a tool for the definition of poset-based non aggregative composite indicators.
Analysing (via computational methods) all the possible linear extensions of a
Hasse diagram makes it possible to identify the position of each statistical unit
(in our case each Italian region) in each linear extension deriving a metric that
is called “average height" (Bruggemann and Annoni, 2014). Such a metric is
used as a synthetic indicator for the system of indicators that is under study
and can be used for a ranking of statistical units. In this work we processed
the data according to the following steps (see Figure 1):

1. we clustered each variable using a Duda-Hart stopping rule (Duda et
al., 2001) in order to discretise the data and to reduce random incom-
patibilities;

2. we derived for each domain of gender equality a Hasse diagram and
we computed for each of them the “extended average height" a domain
specific synthetic indicator (SI);

3. we clustered the domain specific synthetic indicators using again the
Duda-Hart stopping rule;

4. we derived the global Hasse diagram and we used the average heights
of its elements (i.e. the Italian regions) as POR-GEI values.

Steps 1 and 3 were run in STATA by StataCorp LLC whilst steps 2 and 4
were done using the PyHasse online tool (LPOM package) by prof. Reiner
Bruggemann freely available at: https://www.pyhasse.org/.

3. Results and conclusions

Table 1 provides a comparison of the rankings of the Italian regions using
R-GEI and POR-GEI. Spearman’s rank correlation coefficient between the
two rankings is 0.947 that is a pretty high value but, as it can be easily seen,
the two rankings although similar have some important differences. There
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Figure 1. The construction of the POR-GEI synthetic indicator.

Table 1. Rankings of Italian regions according to R-GEI and POR-GEI.

Region R-GEI POR-GEI Region R-GEI POR-GEI
Lombardia 1 2 Umbria 11 8

Emilia-Romagna 2 3 Sardegna 12 10
Toscana 3 1 Valle d’Aosta 13 13

Piemonte 4 7 Abruzzo 14 14
Friuli V.G. 5 9 Molise 15 15

Trentino A.A. 6 5 Puglia 16 18
Lazio 7 5 Basilicata 17 17
Veneto 8 4 Calabria 18 20
Liguria 9 11 Campania 19 19
Marche 10 12 Sicilia 20 16
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are at least two main results that we want to point out in this preliminary
work. First, we think that it is possible to find variable at sub-national level
that are consistent with EIGE’s framework. Second, it is possible to develop
a synthetic indicator for gender equality without any subjective choice (e.g.
weighting of domains). Further work will explore the advantages of POR-
GEI against R-GEI in particular analysing the actual multi-dimensionality of
the battery of variable used in this study and the advantages of a non compen-
sative approach against traditional aggregative (and compensative) synthetic
indicators.
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Using mutual ranking probabilities for dimensionality reduction
and ranking extraction in multidimensional systems

of ordinal variables
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Abstract: In this paper, we address the extraction of rankings from multi-indicator systems,

as a problem of approximation between the so-called “mutual ranking probability” matrices,

associated to the partial order relations derived from the data. After providing a theoretical

treatment of the topic, we propose a practical algorithm for ranking extraction and show it in

action on a real example, pertaining to regional competitiveness.

Keywords: Multi-indicator system, Partially ordered set, Ranking.

1. Introduction

Ranking is one of the most typical goals of statistical evaluation studies,
particularly in socio-economics. The starting point for ranking construction
is usually a multi-indicator system (MIS), i.e. a collection of attributes related
to some concept of interest, against to which statistical units are scored. The
score vector of each unit (i.e. its score profile) is then collapsed into a sin-
gle number, by means of some composite indicators, and a ranking is finally
built. This approach, however, breaks down when the statistical variables
comprised in the MIS are of an ordinal kind and cannot be aggregated. As
a matter of fact, there is no well-founded theory of ranking construction for
ordinal multi-indicator systems yet, although some proposals can be found in
literature (see Bruggemann, R. & Patil, G. P. 2011, Fattore M. 2017). In this
short paper, we address the ranking problem on ordinal MISes as a problem
of dimensionality reduction of the ordinal relations associated to the indicator
systems and develop a practical ranking algorithm which does not involve any
variable aggregation. The key to this result is the use of partial order theory,

∗ University of Milano - Bicocca, marco.fattore@unimib.it
∗∗University of Milano - Bicocca, alberto.arcagni@unimib.it
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which is the most natural formal framework for the description of multidi-
mensional ordinal data and allows to turn “optimal” ranking extraction, into a
problem of matrix approximation. The paper is organized as follows. Section
2 sets the formal stage and introduces some essential concepts of partial order
theory; Section 3 develops the approximation approach to ranking extraction,
provides a heuristic algorithm to perform it in practice and works out a simple,
but real, example; Section 4 concludes.

2. The formal setting

Given a (here, finite) setX , a partial order relation E on it is a binary rela-
tion which is (Davey B. A., Priestley B. H. 2002, Schröder, B. 2002) reflexive
(xE x, for all x ∈ X), anti-symmetric (x1 E x2 and x2 E x1 implies x1 = x2)
and transitive (x1 E x2 and x2 E x3 implies x1 E x3). A set X endowed with
a partial order relation is called a partially ordered set, or a poset for short.
Posets are the natural data structures associated to multi-indicator systems of
ordinal variables. To realize why, suppose to score n objects against k or-
dinal attributes, getting a score profile (i.e. a sequence of k scores) for each
unit. Dealing with ordinal scales, the only operation that can be legitimately
performed on the set of profiles associated to the MIS is just to multidimen-
sionally compare them. If the scores1 of profile x1 are all not higher than
those of profile x2, and at least one is strictly lower, then the two profiles are
comparable and, in this case, profile x2 dominates profile x1 (we write x1Cx2

to mean x1 E x2 and x1 6= x2). But if the two profiles have so-called con-
flicting scores (i.e. profile x1 has some scores higher than profile x2 and some
scores lower), then the two profiles are incomparable (in formulas, x1||x2).
As a consequence, the set of profiles can be ordered only partially and thus
it is naturally structured as a poset2. In principle, one could introduce addi-
tional criteria to order those profiles which are incomparable in the poset, so
defining new posets which, technically speaking, extend (i.e. add comparabil-
ities to) the former. Among such extensions, some have no incomparabilities;

1 We are assuming that all the variables are oriented in the same way.
2 Technically speaking, this requires units’ profiles to be different, so as to fulfill the anti-symmetry
property; if two units share the same profile, they must be clustered together.
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Figure 1. A poset (on the left) and two of its extensions (on the right, a linear
extension). Posets are depicted as Hasse diagrams, i.e. as graphs where
x1 E x2 if and only if there is a downward sequences of edges, linking the
corresponding nodes.

these are called linear extensions and, in practice, correspond to rankings of
the input objects. Figure 1 clarifies pictorially the above discussion. Extract-
ing a ranking out of a MIS, i.e. out of the poset associated to it, is thus the
same as picking up a suitable element out of the set of its linear extensions.
The key point is then determining the criterion to select such an element and
turning it into a practical ranking algorithm. We address both issues in the
next section.

3. Ranking extraction from ordinal multi-indicator systems

Any finite poset can be reconstructed from its set of linear extensions; in
fact, it can be proved that the set of comparabilities of a poset coincides with
the set of comparabilities common to its linear extensions (Schröder, B. 2002).
In shorter terms, any finite poset is the intersection of its linear extensions. In
general, however, the same poset can be reconstructed as the intersection of
smaller subsets of linear extensions and the smallest cardinality of such sets is
called the dimension of the poset (Schröder, B. 2002). Clearly, a linear order is
a poset of dimension 1 and any poset which is not linear has dimension strictly
greater than 1. So, ranking the objects scored in the input MIS is equivalent
to reduce the dimensionality of the associated poset to 1. Any dimensional-
ity reduction process involves some information loss and our aim is to pick
up the ranking which minimizes it. We must thus introduce a cost function,
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driving the extraction process, and this leads to discussing how posets can be
algebraically represented in matrix terms. Finite posets can be algebraically
represented in two main ways, namely by using the cover matrix G or the in-
cidence matrix Z. Let Π be the poset associated to the MIS and let xi, xj ∈ Π;
we say that xj covers xi (xi ≺ xj), if xi C xj and there is no other element
xh ∈ Π such that xiCxhCxj . The covering relation is naturally described by
the cover matrix Gn×n (n being the number of elements in the poset), whose
entries are defined as Gij = 1, if xi ≺ xj , and Gij = 0 otherwise. The
covering relation≺ determines, by transitivity, the partial order relation E (in
fact, E is said to be the transitive closure of ≺), so that G can be considered
as a representation of Π itself. On the other hand, Π can be represented by
simply listing the pairs (xi, xj) of elements, such that xiExj; this is the same
as defining the incidence matrix Zn×n, where Zij = 1 if and only if xi E xj
and Zij = 0 otherwise. Given such matrix representations, one is tempted to
assess the information loss implied by the construction of a ranking ` from the
input poset Π, by measuring the distance between the corresponding matrices
G` and GΠ, or Z` and ZΠ, using some metric, e.g. the L1 distance3. This,
however, is ineffective, and we now show why. Consider Figure 2 where a
small poset and its three linear extensions are depicted. Since the red dot is
incomparable with both the other elements, any of the linear extensions can
be legitimately selected as the candidate final ranking (which, in this case, is
not unique). The G matrices of the poset and its linear extensions are listed
below:

GΠ=


0 0 0

1 0 0

0 0 0

; G`1=


0 0 1

1 0 0

0 0 0

; G`2=


0 0 0

0 0 1

1 0 0

; G`3=


0 0 0

1 0 0

0 1 0

.

The L1 distances between the G matrix of the poset and the G matrices of
the three linear extensions are different (namely, the distance equals 3 for
linear extension 2 and equals 1 for both linear extensions 1 and 3). This

3 Various metrics are available for matrix comparisons; for simplicity’s sake, here we consider L1

distance, which is often used in this context (De Baets B., De Meyer H. 2003). In any case, the results
worked out in the following does not depend, in their essence, on the metric chosen.
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shows that using cover matrices introduces a bias, not justfiable in covering
terms, in ranking selection, ruling out candidates that could be legitimately
chosen. On the other hand, the uselessness of incidence matrices for ranking
selection is made evident by observing that, as it can be easily checked, the
distances between any Z` matrix of a linear extension and the ZΠ matrix of the
input poset are all the same, so that L1 distances between incidence matrices
cannot discriminate among different candidate rankings. To solve the ranking
problem, we thus need a different way to represent finite partial orders. This
requires introducing the concept of mutual ranking probability between poset
objects. Consider a pair of incomparable elements xi and xj of Π; in some
linear extensions, xi is ordered below xj while in some others the order is
reversed (if not, the two elements would be comparable in Π). Let ωij be
the number of linear extensions where xi C xj and let ω be the cardinality
of the set Ω(Π) of linear extensions of Π, then pij = ωij/ω, i.e. the share
of linear extensions where xi is ordered below xj , is called mutual ranking
probability (MRP) between xi and xj . Clearly, pij = 1 − pji and pij = 1 if
and only if xi E xj in Π. Arranging MRPs into a n × n matrix PΠ, we get
a new matrix representation of the poset, which proves much more useful for
ranking extraction, than the cover or the incidence ones. In fact, even if two
objects are incomparable in Π, it may well be that one of the two dominates
the other in most of the linear extensions, so as to “almost dominate” the latter,
also in the input poset. As a simple example, the MRP matrix for the poset
depicted on the left side of Figure 2 is reported hereafter:

PΠ =

 1 0 1/3

1 1 2/3

2/3 1/3 1

 .
These “dominance degrees” are completely overlooked in the GΠ and ZΠ

matrices, while they are accounted for in PΠ, which is not binary4 and pro-
vides a richer and more explicit information on the pairwise dominance struc-
ture of the poset. We thus search for the best ranking of the n objects, by

4 The MRP matrix is binary if and only if it represents a linear order; in such a case, it coincides with
the incidence matrix, since in a linear order there are no incomparabilities.
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Figure 2. A poset on three elements (left) and its three linear extensions
(right).

searching for the linear extension `∗ of Π which minimizes ‖PΠ − P`∗‖1, in
the set of linear extensions of Π. Notice that, in general (e.g. when the in-
put poset has internal simmetries) the best approximating linear order is not
unique.

3.1. A heuristic algorithm

To extract “the” (or “a”) best approximating linear order, we must mini-
mize ‖PΠ − P`‖1 over all of the n× n binary matrices P` representing linear
extensions of Π. In general, this is a hard computational task, which cannot be
accomplished simply by listing all the linear extensions of Π and computing
the cost function, since the cardinality of Ω(Π), for real posets, is extremely
huge. We thus provide a greedy algorithm which reduces the computational
burden, while finding out a reasonable candidate for “the” best approximat-
ing linear extension. The algorithm is described as follows: (i) input matrix
computation: from the input poset Π, compute the cover matrix GΠ and the
MRP matrix PΠ; (ii) initialization: initialize a cover matrix G′ to GΠ; (iii)
updatingG′: search for the highest entry of PΠ, less than 1, and turn to 1 the
corresponding entry of G′; (iv) computing Z′: from G′, compute the tran-
sitive closure Z ′, which represents a partial order, where the comparabilities
implied by the updating of G′ have been added; (v) repetition: repeat steps
3-4, until Z ′ represents a linear order `∗.

As mentioned, the goodness of approximation of the selected linear ex-
tension to the input poset can be computed by considering the L1 distance
between the input MRP matrix PΠ and the final MRP matrix P`∗; a practical
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goodness of fit index is thus:

GoF = 1− ‖PΠ − P`∗‖1

‖PΠ‖1

.

3.2. An application

We consider data on the competitiveness level of Belgium regions, pub-
lished by the Joint Research (Center Annoni P., Dijkstra L. 2013). In par-
ticular, we consider the ranks of each country on three main competitiveness
pillars, named Basic, Efficiency and Innovation, respectively (see Table 1).
Three regions have the same profiles (Bruxelles-Capitale, Vlaams-Brabant,
Brabant Wallon), so we clustered them into a macro-region M . The corre-
sponding partial order is depicted in Figure 3 (left), while the extracted rank-
ing is shown in the middle of the same picture. The algorithm requires 16
iterations (see Figure 3, right panel) to get to the final ranking, which has a
GoF equal to 0.774.

Table 1. Belgium regional ranks on the three competitiveness pillars (M =
Bruxelles-Capitale + Vlaams-Brabant + Brabant Wallon).

Code Region Basic Efficiency Innovation

M / 3 2 1
BE21 Antwerpen 1 5 4
BE22 Limburg 2 7 6
BE23 Oost-Vlaanderen 7 1 5
BE25 West-Vlaanderen 8 6 9
BE32 Heinaut 9 11 10
BE33 Liege 6 9 8
BE34 Luxembourg 11 10 11
BE35 Namur 10 8 7

4. Conclusion and further research

In this paper, we have proposed a new approach to ranking construction
on ordinal multi-indicator systems, as a dimensionality reduction process on
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Figure 3. Belgium competitiveness poset (left), the final ranking (middle) and
the GoFs of the extensions, as iterations proceed.

the associated posets. The methodology is very general and can be applied
to any kind of finite poset, not necessarily derived from systems of indica-
tors. Future research will be mainly devoted to the study of the link between
the optimal dimensionality reduction process proposed in the paper and other
ranking extraction procedures available in literature and to possible logic and
computational improvements of the algorithm itself.
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Abstract: Many statistical models are widely used to predict the result of a soccer match;

the standard predictive criterium of classification is the the majority rule, which corresponds

to the mode in a polytomous case. In this study, other predictive criteria are proposed and
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of indicators built from the resulting 3×3 confusion matrix. The data used come from the

Kaggle European Soccer Database and refer to the seasons from 2009/2010 to 2015/2016 of

the Italian League Serie A.
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1. Problem, data and model

Nowadays, various statistical (probabilistic and algorithmic) models are
widely used to predict one of the three possible results of a soccer match:
loss, draw or win of the home team. This ambitious goal can be pursued
using information available before the match starts, as players performance
statistics or expert judgements. In the case of models with players perfor-
mance predictors, draw is the most difficult outcome to forecast (Carpita et
al., 2015, 2018). Also for models with experts, the prediction accuracy of
draw is considerably worse than that for win and loss (Strumbelj and Sikonja,
2010, Franck et al., 2010). The difficulty in predicting the draw result can be
due to the fact that its probability is lower than the probabilities of loss and
win, so that the classification models underestimate the matches resulting in
draw. In fact, the standard predictive criterium of classification is the majority
rule, so that the mode result (i.e. the result with higher predicted probability)
is used. In this study, other predictive criteria are proposed and compared
with the modal one. Taking into account the ordinal nature of the result of a
match (loss ≺ draw ≺ win), it has been codified as 0-1-2 and considered as
∗ University of Brescia, silvia.golia@unibs.it
∗∗University of Brescia, maurizio.carpita@unibs.it
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a numerical random variable with the predicted probabilities as its frequency
distribution. The dataset used in this paper comes from the Kaggle Euro-
pean Soccer database (Carpita et al., 2018) and contains the matches results
reported in terms of goals scored by the home and away teams and the over-
all performance indicators (averaged according to the coach decisions before
each match, for the four roles in soccer team: goalkeeper, defender, mid-
fielder and forward role) used as predictors, for the seasons from 2009/2010
to 2015/2016 of the Italian League Serie A (Carpita and Golia, 2018). From
the goals scored by the two teams during the match, it is possible to determine
the outcome of the match from the home team point of view, result, classified
as win (W), draw (D) and loss (L).

The model used in this study to predict the probability distribution of result
is the Bayesian Network (BN). The BNs belong to the class of probabilistic
networks which are graphical models that explicit through a graph, the inter-
actions among a set of variables represented as nodes of the graph. A BN is
given by the pair (G,P ), where G is a directed acyclic graph (DAG), and P
is a probability distribution which factorizes according to G. The DAG G is
composed by a set of nodes V , which correspond to a set of random variables
XV indexed by V , and a set E of directed edges between pairs of nodes in V .
The joint probability distribution P over the set of variables XV is factorized
as follows:

P (XV ) =
∏
ν∈V

P (Xν |Xpa(ν)) (1)

where Xpa(ν) denotes the set of parent variables of variable Xν for each node
ν ∈ V .

Once a BN is identified and estimated, it can be used to evaluate the effect
of new evidence Ev on one or more target variables X ′ using the knowledge
encoded in the BN and computing the posterior distribution P (X ′|Ev) (Koller
and Friedman, 2009).

2. Proposed classifiers

When evaluating new evidence, BN gives the probability of each possible
result, so it is necessary to fix a criterium to transform the set of three proba-
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bilities into a number which correspond to the predicted result. In this paper
five different methods, reported in Table 1, have been considered.

Table 1. The proposed classifiers

Classifiers Criterium Threshold result’s code

M1 Mode – –
M2 Median – –
M3 Max. Dist. – –
M4 Expected Value – 0, 1, 2

M5.1 Mode + Expected Value 0.4 0, 1, 2
M5.2 Mode + Expected Value 0.5 0, 1, 2
M5.3 Mode + Expected Value 0.6 0, 1, 2
M5.4 Mode + Expected Value 0.7 0, 1, 2

Rounding rules for classifiers M4 and M5: ceiling (c), floor (f), round (r)

The first one (M1) uses the Mode criterium, which corresponds to the ma-
jority rule in the binary case, whereas the second one (M2) involves the me-
dian, taking advantage of the ordinal scale of the variable result. The third
method (M3) evaluates the difference between the predicted probabilities of
the three possible results of the match and the corresponding sample frequen-
cies and takes the result corresponding to the maximum difference. The forth
method (M4) involves the coding of the result variable as L=0, D=1, W=2
and the use of the expected value rounded following the ceiling (c), round (r)
or floor (f) rule. Other 12 classification methods (M5.j) are obtained making
different use of the modal criterium, transforming in numerical the ordinal
match results and using different rounding methods: the predicted result is
simply the modal one if the corresponding probability is bigger than a given
threshold (0.4, 0.5, 0.6, 0.7), otherwise it is the expected value of a random
variable with predicted probabilities and values obtained coding the match re-
sults in the same way of M4 and rounded following the ceiling (c), round (r)
or floor (f) rule.
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3. Predictive performance indices

The predictive performance of a classifier can be summarized using the so-
called Confusion Matrix; the elements of this matrix report the count of how
many units that truly belong to each class (rows) were predicted by the model
to belong to that class (columns); a unit belonging to class A and predicted to
belong to class P is counted in nAP . Starting from this matrix, it is possible
to compute some indicators that allow one to evaluate the goodness of the
predictive performances of a classifier.

The first indicator is the Sensitivity for class C:

SensC =
nCC
nC•

which expresses how well the classifier recognizes a unit belonging to the
class C. Connected with it there is the Positive Predictive Value of class C:

PPVC =
nCC
n•C

that gives a measure of the probability that a unit truly belongs to the class
C given that its prediction is the class C. It can be of interest to compare
the sensitivities of the classes computing their difference in absolute value; a
useful indicator from these differences should be their maximum (Maximum
Distance Between Sensitivities - MDBS), that is:

MDBS = max
i6=j
|SensCi − SensCj |

The lower the MDBS, the better the classification. Considering only the the
cases of correct classification for class C, it is possible to compute the Preci-
sion for the classifier as:

Prec =

∑
C nCC
n

where n is the sample size. Rearranging the confusion matrix as a 2 × 2

matrix with reference of each class, it is possible to compute the Accuracy for
the class C:

ACCC =
nCC + nCC

n

128



S. Golia, M. Carpita, On classifiers to predict soccer match results

where C is the complement of class C, and then their average obtaining the
Average Accuracy (AA), which is the average per-class effectiveness of a
classifier. The last indicator considered here, called Mean Weighted Clas-
sification Error (MWCE), originates from the idea of a different impact of
different misclassifications and it attributes score 0 to perfect classification,
score 1 to the case in which the classifier predict win (loss) and the actual
value is loss (win), and score 1/3 otherwise. MWCE is a weighted average of
the previous three scores, Sj = 0, 1/3, 1:

MWCE =
3∑
j=1

Sj · Vj

with weights respectively equal to:

V1 =
nLL + nDD + nWW

n

V2 =
nDW + nWD + nDL + nLD

n

V3 =
nLW + nWL

n

The lower the MWCE, the better the classification.

4. Results and conclusions

The predictive performance indices described in Section 3 were evaluated
taking a random samples of 2,087 matches form the 2,587 available as training
set, used to estimate the BN, and the remaining 500 matches as test set. All the
variables in the test set, except for the match result which plays the rule of the
target variableX ′, were considered as new evidenceEv to be used to compute
the posterior distribution P (X ′|Ev). In order to obtain bootstrap standard
errors, the 500 matches results were randomly sampled 1,000 times. Table 2
reports the mean values of all the predictive performance indices except for
MDBS and AA (standard errors in parenthesis), whereas Figure 1 compares
MDBS with AA.

The modal classifier M1, which is the standard one, has the highest preci-
sion, even if is not different from the one of other classifiers such as M3 or
M5.1, a high average accuracy, but also the highest MWCE and a high MDBS
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Table 2. Mean values of the predictive performance indices of the considered
classifiers based on the prediction of 500 matches results randomly sampled
1,000 times (standard errors are in parenthesis)

Classifier Prec MWCE SensL SensD SensW PPVL PPVD PPVW

M1 0.502 0.314 0.458 0.020 0.806 0.451 – 0.533
(0.02) (0.02) (0.07) (0.03) (0.05) (0.04) – (0.03)

M2 0.443 0.244 0.212 0.499 0.551 0.536 0.282 0.602
(0.02) (0.01) (0.06) (0.07) (0.06) (0.07) (0.03) (0.03)

M3 0.480 0.297 0.565 0.230 0.573 0.426 0.318 0.598
(0.02) (0.02) (0.06) (0.06) (0.05) (0.04) (0.04) (0.03)

M4.c 0.455 0.280 – 0.287 0.823 – 0.266 0.531
(0.02) (0.02) – (0.06) (0.04) – (0.04) (0.03)

M4.r 0.340 0.234 0.004 0.853 0.246 – 0.273 0.663
(0.02) (0.01) (0.02) (0.05) (0.06) – (0.02) (0.05)

M4.f 0.315 0.279 0.445 0.729 – 0.456 0.264 –
(0.02) (0.02) (0.07) (0.06) – (0.05) (0.02) –

M5.1.c 0.501 0.297 0.353 0.094 0.823 0.497 – 0.531
(0.02) (0.02) (0.05) (0.06) (0.05) (0.05) – (0.03)

M5.1.r 0.494 0.267 0.353 0.260 0.713 0.497 0.297 0.574
(0.02) (0.02) (0.05) (0.06) (0.04) (0.05) (0.04) (0.03)

M5.1.f 0.499 0.285 0.445 0.182 0.713 0.456 – 0.574
(0.02) (0.02) (0.07) (0.07) (0.04) (0.05) – (0.03)

M5.2.c 0.481 0.285 0.204 0.174 0.823 0.536 0.257 0.531
(0.02) (0.02) (0.06) (0.06) (0.04) (0.07) (0.05) (0.03)

M5.2.r 0.442 0.244 0.204 0.502 0.550 0.536 0.281 0.602
(0.02) (0.01) (0.06) (0.07) (0.06) (0.07) (0.03) (0.04)

M5.2.f 0.466 0.274 0.445 0.345 0.550 0.456 0.297 0.602
(0.02) (0.02) (0.07) (0.08) (0.06) (0.05) (0.03) (0.04)

M5.3.c 0.455 0.280 0.003 0.284 0.823 – 0.265 0.531
(0.02) (0.02) (0.02) (0.06) (0.04) – (0.04) (0.03)

M5.3.r 0.373 0.230 0.005 0.785 0.357 – 0.278 0.655
(0.02) (0.01) (0.02) (0.05) (0.04) – (0.02) (0.04)

M5.3.f 0.424 0.264 0.445 0.518 0.357 0.456 0.287 0.655
(0.02) (0.02) (0.07) (0.07) (0.04) (0.05) (0.03) (0.04)

M5.4.c 0.455 0.280 – 0.287 0.823 – 0.266 0.531
(0.02) (0.02) – (0.06) (0.04) – (0.04) (0.03)

M5.4.r 0.340 0.234 0.004 0.853 0.246 – 0.273 0.663
(0.02) (0.01) (0.02) (0.05) (0.06) – (0.02) (0.05)

M5.4.f 0.325 0.279 0.445 0.703 0.037 0.456 0.265 –
(0.02) (0.02) (0.07) (0.07) (0.05) (0.05) (0.02) –

The symbol – corresponds to the case of an index equal to 0 or infinity
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Figure 1. MDBS versus AA for the considered classifiers

due to the fact that mainly it is not able to predict the draw result. Classifiers
M2 and M3 allow to increase the ability in predicting the draw, but at the same
time classifier M2 partially looses the ability to predict the loss.

Let one consider the classifiers M4 and M5, it has to be noted the role
played by the rounding procedure. For example, let one consider the classifier
M4, the ceiling and round roundings reduce the possibility to predict the loss,
whereas the floor rounding reduces the possibility to predict the win.

From Figure 1, the best combinations of low MDBS and high AA are
shown by classifiers M2, M3, M5.2.f and M5.3.f, and between them, M3
and M5.2.f exhibit better combinations of Prec, MWCE, Sens and PPV .
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The results highlighted the sensibility of the prediction performances to
the choice of the classifier: there are classifiers that are unbalanced towards
one of the three results of a match, other more balanced.

These results could be related to the dataset in use: an interesting develop-
ment of the present work is to apply the proposed classifiers, to the leagues of
other countries in Europe and verify if similar results are obtained.
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Multiple imputation and selection of ordinal level-2 predictors
in multilevel models
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Carla Rampichini ∗∗∗∗

Abstract: We devise a strategy to handle ordinal level-2 predictors of a two-level random

effect model in a setting characterized by two nontrivial issues: (i) level-2 predictors are

severely affected by missingness; (ii) there is redundancy in both the number of predictors and

the number of categories of their measurement scale. We tackle the first issue by considering

a multiple imputation strategy based on information at both level-1 and level-2. We tackle

the second issue by means of regularization techniques for ordinal predictors, also accounting

for the multilevel data structure. The work is motivated by a case study at the University of

Padua about the relationship between student ratings of a course and several characteristics

of the course, including teacher feelings (ordinal predictors) and practices (binary predictors)

collected by a specific survey with nearly half missing respondents.

Keywords: Multilevel models, Multiple imputation, Variable selection.

1. Case study

We analyse student satisfaction, as measured by student evaluation of teach-
ing (SET). The peculiarity of the study lies in the availability of many vari-
ables measuring teacher characteristics and beliefs, and teaching practices.
Indeed, this work exploits a dataset of the University of Padua for academic
year 2012/13, merging three different sources: (i) the traditional SET survey
with 18 items, measured on a ten-point scale (1: low, 10: high); (ii) adminis-
trative data on students, teachers and didactic activities; (iii) a survey carried
out by the PRODID project on teacher beliefs and practices.
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Data have a two-level hierarchical structure, with 56, 775 student ratings at
level-1 and 1, 016 classes at level-2. The average class size is 79 (min 5, max
442). Our aim is that of analyzing student’s satisfaction about two key aspects:
teacher ability to involve students (item D06 of the SET questionnaire) and
teacher clarity (item D07).

The analysis is based on the following bivariate 2-level linear model for
item m (m: 1 for D06, 2 for D07) of student i in class j:

Ymij = αm + β′mxij + γ ′mwj + umj + emij (1)

where xmij is the vector of student covariates (level-1) and wmj is the vector
of teacher and class covariates (level-2). Level-1 errors, emij , are assumed to
be independent across students, while level-2 errors (the random effects), umj ,
are assumed to be independent across classes and independent from level-1 er-
rors. We make standard assumptions for the distributions of the model errors,
including homoscedasticity (within each outcome) and normality. Therefore,
the response vector Yij = (Y1ij,Y2ij)

′ has residual variance-covariance ma-
trix equal to V ar(Yij) = Σu + Σe, where Σu and Σe are the covariance
matrices of the errors at level-2 and level-1, respectively.

The survey on teacher beliefs and practices has about fifty percent of miss-
ing questionnaires, posing a serious issue of missing data at level-2. An ana-
lysis based on list-wise deletion would discard the entire set of student ratings
for non responding teachers, causing two main problems: (i) a dramatic re-
duction of the sample size, and thus of the statistical power, and (ii) possibly
biased estimates if the missing data mechanism is not MCAR.

2. Handling missing data at level-2

In multilevel models, the treatment of missing data requires special tech-
niques. In this framework, data have a hierarchical structure and, thus, miss-
ing values can occur at any level of the hierarchy. Furthermore, missing values
can alter variance components and correlations, thus, leading to possible mis-
leading inferential conclusions. Multiple imputation (MI) is the most flexible
approach to handle missing data. It has been extended to the multilevel set-
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ting following two main approaches: a fully conditional specification, also
known as multivariate imputation by chained equations (MICE), and a joint
modelling (Mistler and Enders, 2017; Grund et al., 2018).

In our case study, although the substantive model (1) is multilevel in nature,
missing data are only at level-2. This feature makes the imputation simpler as
we directly can apply standard MI techniques to level-2 data and, then, merge
level-1 and level-2 data to obtain complete datasets. On the other hand, the
MI step remains a challenging task as we have to deal (and, thus, impute) a
high number of categorical variables with a high percentage of missing in-
formation. In particular, about 50% of the teachers did not respond to the
whole questionnaire, producing missing values on 10 binary items (teacher
practices) and 20 ordinal items (teacher beliefs on a 7-point scale.

According to the available literature, the imputation model at level-2 should
include both all the level-2 covariates and information on level-1 variables,
in particular the response variables. Several strategies may be adopted to
summarize information from level-1 variables (Erler et al., 2016; Grund et
al. 2017). Here, we consider the cluster mean, which is effective in gen-
eral and easy to implement in our case, where level-1 variables (including
the response) are completely observed. We perform multivariate imputa-
tion by chained equations based on binary logit models for the 10 binary
items (teacher practices) and cumulative logit models for the 20 ordinal items
(teacher beliefs). The imputation model for a given item includes the follow-
ing covariates: the fully observed class and teacher characteristics, the cluster
means of level-1 variables (covariates and outcomes), and the cluster size.

3. Results

The bivariate two-level model in equation (1) is fitted by maximum like-
lihood on M = 10 imputed data sets, and the results are combined with the
standard MI rules. The analysis is conducted using the gsem and mi com-
mands of Stata, version 15. We first fit the model without covariates, to
explore the correlation structure of the two outcomes. We find out that the
Intraclass Correlation Coefficient (ICC) is about 30% for both the teacher’s
ability to involve students and teacher’s clarity. The two outcomes are highly
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correlated (0.83), especially at level-2 (0.933).
Then, we add the available covariates in the model. In particular, teacher

practices are included as binary indicators, while teacher beliefs are sum-
marized into 6 indicators averaging the relevant seven-point ordinal items,
i.e. passion for teaching (2 items), passion for research (2 items), need for
teaching support (4 items), care about student needs (3 items), role of active
learning (4 items), interest in innovative teaching methods (3 items). The
final model has a total of 6 student characteristics and 22 covariates at the
second level (5 class variables, 3 teacher characteristics, 8 teacher practices,
and 6 teacher beliefs). To keep the number of parameters reasonably small,
we start treating the ordinal predictors as if they were effectively continuous,
thus assuming they linearly influence the two outcomes under investigation.

Results from the analysis show that, among the objective traits of the
teacher included in the model, only age and gender are significantly related
with SET ratings on teacher ability. On the other hand, several subjective
traits of the teachers (available thanks to the PRODID survey) are signifi-
cantly related with SET ratings. In particular, teacher beliefs, such as feelings
about teaching and need of support to improve teaching activities, seems to be
strongly related with the outcomes, while practices turn out to be less relevant.

To quantify the influence of missingness on the sampling variance of a
parameter estimates, we can consider the Fraction of Missing Information
(FMI - Rubin, 1987). For imputed covariates, FMI ranges from 0.15 to 0.68,
with a median value of 0.44, indicating that 44% of the sampling variance is
ascribable to missing data. For the imputed covariates with FMI < 50% (the
fraction of missing data), the trade-off between the increase of the standard
errors due to MI and its reduction due to data augmentation is favorable, i.e.
the relative efficiency is high.

4. Ongoing research: selecting the covariates with regularization techniques

As described above, teacher beliefs are measured by 20 ordinal items based
on a 7-point Likert scale. To account for the ordinal nature of such variables
in model (1), we should include in the linear predictor 6 dummies per variable
that would lead to disproportionate number of parameters, difficult to be esti-
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mated and interpreted. A simple way to avoid the issue is to consider ordinal
variables as if they were measured on a continuous scale. The results dis-
cussed in Section 3 are based on the assumption that the ordinal items affect
the outcomes through a set of scales with linear effects. Apart from linearity,
the use of scales raises issues of validity.
An alternative, more flexible approach to model the effect of ordinal items
is to rely on regularization methods which allow us to explicitly consider the
ordinal nature of the predictors while ensuring model parsimony. This lat-
ter goal is achieved by jointly identifying the predictors to be included in the
model and the categories of each predictor to be distinguished. Clearly, in
our case study, standard methods need to be extended to deal with both the
hierarchical structure of the data and the missingness.
As regards the former aspect, we aim at considering the penalty term intro-
duced by Gertheiss and Tutz (2010) to handle ordinal predictors

J(γ) =

p∑
s=1

ks∑
r=1

|γsr − γsr−1|,

where p denotes the number of parameters in γ and ks the number of cat-
egories of the s-th predictor (7 in our case). This is combined with the es-
timation approach based on a gradient ascent algorithm introduced by Groll
and Tutz (2014) in the context of generalized linear mixed model for variable
selection. As regards the missing data issue, we aim at adopting a strategy
based on the selection of the optimal predictors on each imputed dataset; at
last, we retain those predictors which result to be significant in at least one of
the imputed dataset.
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should be large
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Abstract: The paper investigates the impact of the number of response categories m on the

efficiency of the estimator of the regression coefficients in cumulative models for ordinal data

with proportional link. Results point out that efficiency is an increasing function of m.

Keywords: Efficiency, Ordinal data, Cumulative models.

1. Introduction

A crucial point in the collection of ordinal responses is the number of cat-
egories m to be made available to the respondents.

This issue has been extensively dealt with in the literature though the pro-
posals are not completely consistent, mostly because of the variety of mea-
surement contexts (e.g., medicine, marketing, psychology, etc.) and opti-
mization criteria (e.g., reliability, validity, sensitivity, information process-
ing, ease-of-use, response time, and so forth) (see the seminal papers of Cox
(1980) and Preston and Colman (2000); an updated list of references can be
found in Lewis and Erdinç (2017)). Even if there is no unanimous consen-
sus on the choice of m, there is a wide agreement that the scale should be
refined enough to collect all the available information without being so re-
fined to encourage response errors. In fact, although the information trans-
mission capacity of a scale is improved by increasing the number of response
alternatives, response error seems to increase concurrently. Frequently rec-
ommended reference criteria are respondent preference; reliability; validity;
need of “uncertain” category; information theoretic measures and statistical
efficiency of estimators (see Benson (1971) and Ramsey (1973), among oth-
ers).
∗University of Naples Federico II, maria.iannario@unina.it
∗∗University of Sannio, acmonti@unisannio.it
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Within the statistical literature the choice of m is discussed by Agresti
(2010) who points out that a large m allows a more powerful detection of
associations between variables; a result confirmed by Allahyari et al. (2016)
with reference to test on differential item functioning. Furthermore Iannario
et al. (2016) show that a larger value of m reduces the impact of response
errors on the local robustness of the estimators in the modelling framework
for ordinal data denoted as CUB models.

The current paper investigates the effect of varying m on the efficiency of
the estimators by exploiting the properties of the cumulative models with pro-
portional link (Agresti, 2013). Here it is assumed that the observable ordinal
variable Y is linked to an underlying latent variable Y ∗ through the relation-
ship

Y = j ⇐⇒ αj−1 < Y ∗ ≤ αj, j = 1, 2, . . . ,m, (1)

where −∞ = α0 < α1 < . . . < αm = +∞ are the thresholds of the
continuous support of Y ∗. The latent variable Y ∗, in turn, depends on p ≥ 1

covariates, so that for the i-th statistical unit we have the latent regression
model

Y ∗i = Xi1β1 +Xi2β2 + · · ·+Xipβp + εi = X ′iβ+ εi, i = 1, 2, . . . , n, (2)

where Xi = (Xi1, Xi2, . . . , Xip)
′, β = (β1, β2, . . . , βp)

′ and εi is a random
variable whose distribution function is indicated by G(ε).

Relationship (1) yields the following probability mass function for Yi, con-
ditionally onXi = xi ≡ (xi1, xi2, . . . , xip)

′,

P (Yi = j | xi) = P (αj−1 < Y ∗i ≤ αj)

= G(αj − x′iβ)−G(αj−1 − x′iβ)

for j = 1, 2, . . . ,m.
Formula (1) implies that from the same latent variable Y ∗, a countable

set of ordinal variables
{
Y (m)

}
can be generated by allowing m to vary in

{3, 4, . . .}. These variables differ from each other for the number of cate-
gories. Nevertheless all of them refer to the same latent regression model
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and therefore the different estimators of the regression coefficient, which are
obtained by varying m, estimate always the same β. This feature of the cu-
mulative model with proportional link can be exploited to analyze how the
choice of m affects the efficiency of the estimator and the reliability of the
derived inferential procedures.

The paper considers cumulative models with logit, probit and complemen-
tary log-log link and it is organized as follows. The next Section provides a
brief overview of the likelihood inference, whereas Section 3 describes the
design of the experiment. The efficiency of the estimators is investigated in
Sections 4 while hypothesis testing is considered in Section 5. Final remarks
end the paper.

2. Likelihood inference

Let θ = (α′,β′)′ be the parameter vector, where α = (α1, . . . , αm−1)′ is
the vector of the thresholds. Given an observed random sample (yi,xi), for
i = 1, 2, . . . , n, let y = (y1, y2, . . . , yn)′ and X be the matrix whose rows
are given by x1,x2, . . . ,xn. The log-likelihood function is

∑n
i=1 `(θ; yi,xi)

with individual term

`(θ; yi,xi) =
m∑
j=1

I[yi = j] logPr(Yi = j|xi) (3)

where I[ω] is an indicator function which takes value 1 when ω holds and
0 otherwise. The Maximuml Likelihood Estimator (MLE) θ̂ = (α̂, β̂) is
obtained by maximizing (3) (see Iannario et al. (2017) for details).

The generic term of the information matrix I(θ,X) for a single observa-
tion, conditionally onX = x, is given by

Irs(θ,x) = EY

{
∂ `(θ, Y,X)

∂ θr

∂ `(θ, Y,X)

∂ θs

∣∣∣∣X = x

}
for (r, s) = 1, 2, . . . ,m + p − 1. The elements of the unconditional infor-
mation matrix I(θ) are given by Irs(θ) = EX

{
Irs(θ,X)

}
. The asymptotic

variance-covariance matrix of the MLE is obtained by inverting the informa-
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tion matrix, i.e. I(θ)−1.
Asymptotically we have

√
n
(
θ̂ − θ

)
→ N (0, I(θ)−1). In particular for

the estimator β̂k of the single regression coefficient βk we have

√
n
(
β̂k − βk

)
→ N

(
0, I(θ)βkβk

)
(4)

where I(θ)βkβk is the element on the diagonal of I(θ)−1 corresponding to βk.

3. The design of the experiment

To investigate the efficiency of the estimators whenm varies, the following
regression models for the latent variable Y ∗ are considered.

• Model 1 (with one continuous covariate). The latent variable depends
on a continuous covariate

Y ∗ = Xβ + ε ,

where X ∼ N(0, 1) and β = 1.5.

• Model 2 (with dichotomous covariates). The latent variable depends on
two dichotomous covariates

Y ∗ = X1β1 +X2β2 + ε ,

where X1 ∼ Ber(0.5), X2 ∼ Ber(0.25) and X1 and X2 are mutually
independent. The regression coefficients are β1 = 1.5 and β2 = 0.7.

• Model 3 (with mixed covariates). The latent variable depends on a
continuous covariate, a dichotomous one and their interaction. The re-
gression model is

Y ∗ = X1β1 +X2β2 +X1X2β3 + ε ,

where X1 ∼ N(0, 1), X2 ∼ Ber(0.5) and X1 and X2 are mutually
independent. The regression coefficients are β1 = 2.7, β2 = 1.5 and
β3 = 0.7.
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The probit link assumes ε ∼ N(0, 1), the logit link assumes a logistic
distibution for ε and the complementary log-log link is such that G(ε) = 1−
exp{− exp(ε)} (McCullagh and Nelder, 1989).

The thresholds are assumed to be equidistant, that is they satisfy the con-
straint αj − αj−1 = h. The distance is h = (Y ∗0.975 − Y ∗0.025)/m, where Y ∗0.025

e Y ∗0.975 are the 2.5% and 97.5% percentiles of the distribution of Y ∗ simu-
lated from 5 millions of observations. The thresholds are centered around the
median.

The efficiency of the MLE is assessed through a Monte Carlo experiment.
Initially, for the three models, 10, 000 samples of the response variable Y ∗ are
generated from the latent regression model (2). Then, for any values of m
between 3 and 11, the thresholds are identified and the values of Y ∗ are trans-
formed into ordinal responses by applying (1). The estimates are computed
by means of the R package ordinal under the constrain αj − αj−1 = h.

4. The efficiency of the estimators

The efficiency of the estimators of the regression coefficients is summa-
rized in Table 1. In Model 1 there is a single regression coefficient, so that the
efficiency is measured by the Mean Square Error MSE(β̂). In case of Mod-
els 2 and 3, where there is a vector of regression coefficients, the efficiency is

Table 1. Efficiency of the estimators of the regression coefficients (MSE×10)
Model 1 Model 2 Model 3

m Probit Logit Cloglog Probit Logit Cloglog Probit Logit Cloglog
3 0.094 0.151 0.111 0.305 0.779 0.385 1.451 1.998 1.563
4 0.072 0.127 0.086 0.268 0.699 0.321 0.960 1.447 1.036
5 0.061 0.113 0.072 0.253 0.666 0.286 0.724 1.204 0.801
6 0.056 0.110 0.067 0.244 0.651 0.268 0.593 1.080 0.687
7 0.053 0.105 0.063 0.238 0.642 0.259 0.530 1.007 0.609
8 0.051 0.104 0.06 0.236 0.632 0.249 0.493 0.968 0.553
9 0.049 0.102 0.058 0.234 0.631 0.245 0.457 0.927 0.523

10 0.049 0.100 0.057 0.232 0.625 0.242 0.428 0.909 0.487
11 0.048 0.100 0.055 0.231 0.626 0.238 0.415 0.887 0.468

measured by the trace of the portion of the MSE matrix related to β̂, that is∑p
k=1MSE(β̂k). The sample size is n = 500.
The results clearly point out that the efficiency of β̂ is an increasing func-

tion of m. When m increases, each category of Y corresponds to a smaller
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class on the support of the latent variable Y ∗. The larger amount of informa-
tion available on the latent variable, provided by a finer categorization, yields
more efficient estimators.

In particular the decrease of the MSEs is especially marked for low val-
ues of m, and tapers off around m = 10. This behavior is shared by the
three models and by the three link functions and it is consistent with the main
findings of the psychometric literature, although derived through different op-
timization criteria (see Nunnally (1978), among others).

Notice that the efficiency of β̂ affects the efficiency of the estimators of
the odds ratio (OR) which, therefore, depends on m too. For instance Fig-
ure 1 shows, for Model 3 with the logit link, the boxplot of the estimator of
OR(X2|X1 = 1.5) when m varies. Here it is possible to observe - when m
increases - a reduction of both the interquartile distance and the length of the
whiskers. In addition the occurrence of anomalous data decreases.

Figure 1. Boxplot of the estimators of the OR(X2|X1 = 1.5) in Model 3 with logit link
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5. Hypothesis testing

The impact of the choice of m on the efficiency of the estimators affects
also the power of the test. Consider the hypothesis on a single regression
coefficient H0 : βk = β0

k versus H1 : βk 6= β0
k . It can be tested through a

t-type statistic t = (β̂k − β0
k)/SE(β̂k) where the standard error is given by

SE(β̂k) =

√
nI(θ̂)βkβk . By (4), under H0, the test statistic is asymptotically

N(0, 1) distributed. The null hypothesis is rejected when |t| > z1−α/2 where
z1−α/2 = Φ−1 (1− α/2) and Φ(·) is the standard normal distribution function.

To investigate the effect of varying m on the power of the test we con-
sider the null hypothesis H0 : β3 = 0 in Model 3 (which implies that the
interaction between X1 and X2 is omitted from the latent model). Table 2
shows the power of the test at the 5% significance level, for the sample sizes
n = 250, 500 and for the three link functions. The power, computed as per-
centage of rejection of H0, clearly increases with m. A large m is especially
recommended when the cumulative logit model is adopted since the power
can be very low for small m.

Table 2. Power of the test on the null hypothesis β3 = 0 in Model 3 at the 5%
significance level

Probit Logit Cloglog
m n = 250 n = 500 n = 250 n = 500 n = 250 n = 500
3 63.1 90.4 39.5 71.0 59.7 87.9
4 83.0 98.6 54.2 85.9 79.5 97.5
5 91.8 99.7 63.8 91.5 89.1 99.5
6 95.6 100.0 69.2 94.5 93.5 99.9
7 97.6 100.0 72.5 95.9 96.5 100.0
8 98.3 100.0 75.6 96.6 97.5 100.0
9 98.7 100.0 77.0 97.3 98.1 100.0
10 99.1 100.0 77.9 97.6 98.6 100.0
11 99.3 100.0 79.1 97.8 98.9 100.0
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6. Final remarks

By increasing m more information become available on the latent variable
underlying the observable response which allow more efficient estimation and
more powerful tests.

The gain in efficiency is especially marked for small values of m while it
gets smaller as m increases. These findings are in agreement with the recom-
mendations from psychometric literature though the latter are obtained with
different criteria (see Preston and Coleman (2000); Fox and Jones (1998),
among others).
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Solutions to issues with partial proportional odds models

Altea Lorenzo-Arribas∗ , Mark J. Brewer ∗∗ , Antony M. Overstall∗∗∗

Abstract: Proportional Odds Models (POMs) are still the most commonly used cumulative

link models despite clear arguments by some authors supporting the fact that Partial Propor-

tional Odds Models (PPOMs) are “often a superior alternative [to POMs]” (Williams, 2016)

and a particularly better and more accurate alternative when the PO assumption is violated

by some or all of the explanatory variables”. These authors also state however that “the use

of PPOMs has itself been problematic or at least sub-optimal.” In this paper we focus on one

of he most common drawbacks of PPOMs as reported in the literature, alas PPOMs can pro-

duce negative predicted probabilities (Hedeker et al., 2006). We propose a reparameterisation

that solves this issue and is computationally more efficient than previously proposed Lasso

penalisations, and compare the results for both approaches.

Keywords: Partial proportional odds models, Lasso penalisation, Reparameterisation.

1. Partial proportional odds models

Given an ordinal response variable Yi with C ordered categories, we define
a Partial Proportional Odds Model (PPOM) as follows:

logit(P (Yi ≤ j)) = αj +

p∑
k=1

βkXik +

q∑
k=1

γjkZik (1)

with i = 1, . . . , n; j = 1, . . . , C − 1; −∞ < α1 < α2 < . . . < αC−1 < ∞;
γjk = γk + ujk with γ1k = 0 for all k = 1, . . . , q, and q ≤ p (Peterson &
Harrell, 1990). βk corresponds to the covariates for which the PO holds and
are also referred to as ‘global effects’ (Poβnecker & Tutz, 2016) , while we
get parameters γjk for the covariates for which we relax the PO assumption,
and are also known as ‘category-specific effects’ (Poβnecker & Tutz, 2016).
Each individual parameter γjk can be additively broken down into a fixed
∗Biomathematics and Statistics Scotland, altea.lorenzo-arribas@bioss.ac.uk
∗∗Biomathematics and Statistics Scotland, mark.brewer@bioss.ac.uk
∗∗∗University of Southampton, A.M.Overstall@soton.ac.uk
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component γk and an individual component ujk, i.e., γjk = γk+ujk where ujk
represents the deviation of γjk from the “typical” value γk in the population
for individual j.

Peterson & Harrell (1990) also define the corresponding log-likelihood as:

L =
n∑
i=1

C∑
j=1

Iij log(πij) (2)

with i = 1, . . . , n; j = 1, . . . , C. where an indicator variable is defined as:

Iij =

{
1 if Yi = j

0 if Yi 6= j
(3)

and the probabilities πij are defined as follows:

πij = P (Yi = j) =


P (Yi ≤ 1) if Yi = 1

P (Yi ≤ j)− P (Yi ≤ j − 1) if 1 < Yi < C

1− P (Yi ≤ C − 1) if Yi = C

(4)

where P (Yi ≤ j) is the cumulative probability that a given observation is
less than the j-th level and for j = 1, . . . , C we have that P (Yi ≤ C) = 1. Our
initially proposed solution is to add a penalty J to the original log-likelihood
L (defined in Formula (5) ) via Lasso (Tibshirani, 1996):

γ̂ = argmin(−L+ J) = argmin(−
n∑
i=1

C∑
j=1

Iij log(πij) +

q∑
k=1

λk

C−1∑
j=1

|ujk|)

(5)

where the penalisation only applies to ujk - the category-specific compo-
nent of γjk = γk + ujk - , and λk ≥ 0 are the tuning or shrinkage parameters
that we will determine by cross-validation.
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2. Re-parameterisation

While Lasso penalisation performs well for small samples, its model se-
lection capabilities are limited (Zhao & Yu, 2006). We propose as an al-
ternative a geometric reformulation of the model which also guarantees that
class probabilities will be non-negative. The proposed parameterisation for
the log-likelihood is derived from two straight lines for which we impose a
restriction so that they do not overlap within the stated limits. In order to find
the parameter values, we re-express the original definition of PPOMs as:

logit(P (Yi ≤ j)) = αj + γjZi, (6)

where p = 0 and q = 1, and i = 1, . . . , n.

2.1. One covariate

In order to avoid the crossing of regression lines, for an ordinal response
variable with 3 categories, we would require that P (Yi ≤ 1) ≤ P (Yi ≤ 2),
that is:

α1 + γ1zi ≤ α2 + γ2zi (7)

or {
γ2 ≥ (α1 − α2)/zi + γ1 for zi ≥ 0

γ2 ≤ (α1 − α2)/zi + γ1 for zi ≤ 0
(8)

When we assume a minimum for our data zmin = 0 and a maximum of zmax =

1, we find that:
γ2 ≥ (α1 − α2) + γ1 (9)

where (α1 − α2) ≤ 0. (This is one of the many possible combinations).
We could have the following parameterisation for a 2 categories response

variable:{
α1 = α∗1; α2 = α1 + α∗2 where α∗1, α

∗
2 ≥ 0

γ1 = γ∗1 ; γ2 = γ1 + (α1 − α2) + γ∗2 where γ∗1 , γ
∗
2 ≥ 0

(10)
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Or we could define more conveniently: a2 = log(α∗2) and g2 = log(γ∗2) and
apply this new parameterisation to the corresponding log-likelihood.

This method imposes the constraint systematically rather than arbitrarily.
This parameterisation could be extended to models with more covariates.

2.2. Two covariates

This parameterisation could be extended to models with more covariates
(see Figure 1 for the case of two covariates).

Figure 1. Re-parameterisation for a PPOM with two covariates za and zb.

In order to avoid the crossing of the planes, we would have the following
conditions for the four corners:

α2 > α1

α2 + γa2 > α1 + γa1
α2 + γa2 + γb2 > α1 + γa1 + γb1

α2 + γb2 > α1 + γb1

(11)

In summary,
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α0 + ztγ0
′ ≤ . . . ≤ αC−1 + ztγC−1 (12)

For further dimensions, a similar approach would be necessary (e.g., 8
corners for cube in 3-D).

3. Case studies

3.1. Environmental attitudes

We apply our new parameterisation to data from the Scottish Environmen-
tal Attitudes and Behaviours Survey (Scottish Government, 2008) which eval-
uates respondents’ awareness of environmental issues and their greener be-
haviours including; knowledge and attitudes towards climate change, travel
behaviour, and eco-friendly purchasing. The study found that high environ-
mental engagement is more concentrated among certain groups in the popu-
lation, with educational attainment, social class, and age being the strongest
predictors. We have assessed different ordinal models including those vari-
ables. We have focused on one where we found crossing of regression lines.
It models educational attainment versus age via a PPOM for which the PO
assumption is relaxed for the continuous variable age (Figure 3). Although we
acknowledge that for an appropriate analysis of the data, we would need to
control for other covariates (e.g., sex), for the purposes of this methodological
study, we start with one covariate only. Both the Lasso and the reparameteri-
sation fix the problem (Figure 4).

3.2. Eye disease risk factors

We then look at data from the Wisconsin Epidemiological Study of Dia-
betic Retinopathy (Agresti, 2010). The primary outcome is severity of retinopa-
thy which was measured in the left and right eye of every subject (ordinal vari-
able with categories; none, mild, moderate, and proliferative). For the sake
of simplicity, we restrict our data to the left eye and model it as a function
of the left eye refraction index and systolic blood pressure (both continuous
variables) and ignore subject effect (Figure 4). The Lasso penalisation does
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Figure 2. Environmental predictions. Predictions from PPOM versus age.

Figure 3. Environmental attitudes. Predictions from Lasso penalised (left)
and reparameterised (right) PPOM versus age.

152



A. Lorenzo-Arribas et al., Issues with partial proportional odds models

Figure 4. Eye disease risk factors. Predictions from PPOM versus systolic
blood pressure.

not fully fix the issue while the reparameterisation does not show any overlap
within the range of the covariate (Figure 5).

4. Conclusion

Issues associated to PPOMs can be overcome by different methods. Lasso
penalisation requires a choice of shrinkage parameter, which can be challeng-
ing. In addition to this limitation, it does not necessarily fix the issue in all
cases. Our proposed reparameterisation is a more systematic and computa-
tionally efficient approach and has proven to work consistently for the two
examples under study.

Acknowledgements: This work was partially supported by the Scottish Government’s Rural

and Environment Science and Analytical Services Division (RESAS).
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Figure 5. Eye disease risk factors. Predictions from Lasso penalised (left)
and reparametersided (right) PPOM versus systolic blood pressure.

References

Agresti A. (2010) Analysis of ordinal categorical data, Wiley, New Jersey.
Hedeker D., Berbaum M., Mermelstein R. (2006) Location-scale models for multilevel or-

dinal data: between- and within-subjects variance modelling, Journal of Probability
and Statistical Science, 4, 1-20.

Peterson B., Harrell F.E. (1990) Partial proportional odds models for ordinal response vari-
ables, Journal of the Royal Statistical Society, Series C (Applied Statistics), 39, 205-
217.

Poβnecker, W., Tutz G. (2016) A general framework for the selection of effect type in
ordinal regression, Ludwig-Maximilians-Universitat Munchen Technical report, 186.

Scottish Government (2008) The Scottish environmental attitudes and behaviours survey
2008-2009. IPSOS Mori.

Tibshirani R. (1996) Regression shrinkage and selection via the Lasso, Journal of the Royal
Statistical Society B, 40(1), 267-288.

Williams R. (2016) Understanding and interpreting generalized order logit models, The
Journal of Mathematical Sociology, 58, 7-20.

Zhao P., Yu B. (2006) On model selection consistency of Lasso, Journal of Machine Learn-
ing Research, 7, 2541-2563.

154



A latent variable model for a derived ordinal response accounting
for sampling weights, missing values and covariates

Fulvia Pennoni∗ , Miki Nakai∗∗

Abstract: We consider a latent class model especially tailored for an ordinal response derived

by comparing two continuous variables. We propose a general method to estimate the model

parameters with survey data when there are missing responses and survey weights. First, we

estimate the model with the missing responses without covariates with a weighted likelihood

function maximised through the Expectation-Maximization algorithm. In order to determine

the suitable number of latent classes we rely on the Akaike Information Criterion. Second,

by fixing the parameters of the measurement model we estimate the remaining parameters

by adding the full set of covariates. We make predictions on the basis of the maximum a

posteriori probability. In the application, we consider Japanese survey data collected at four

waves covering 40 years with the aim to study changes on couples’ breadwinning patterns.

Keywords: Akaike information criterion, Expectation-Maximization algorithm, Gender in-
equality, Household income composition.

1. Introduction

The latent class model (Lazarsfeld and Henry, 1968) has been considered
for the analysis of data arising in different contexts by many authors since it is
a flexible model to account for the heterogeneity among responses provided
by different individuals which cannot be explained by means of the observable
covariates. This model is especially tailored for an ordinal response variable
when it has been derived for example by comparing values of two or more
continuous variables. It is a model-based approach that properly accounts
for the underlying latent continuous responses and allow us to investigate the
associations with the covariates as well as to dispose of data driven typologies
of individuals (see, among others, Pennoni, 2014). Another advantage is that

∗Department of Statistics and Quantitative Methods, University of Milano-Bicocca,
fulvia.pennoni@unimib.it
∗∗College of Social Sciences, Ritsumeikan University, mnakai@ss.ritsumei.ac.jp
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it is possible to elaborate the model in many ways and to assess the tenability
of the underlying hypothesis.

Maximum likelihood estimation of the model parameters is well estab-
lished and it is carried out through the Expectation-Maximization algorithm
(see, among others Bartolucci et al., 2013). However, the use of weighted
methods for the estimation of the parameters with missing responses and co-
variates still deserves research. In the current proposal, instead of performing
listwise deletion we rely on the missing at random assumption and we retain
the missing responses for the outcome, while the values of the missing co-
variates are imputed through multivariate imputation by chained equations.
In this way, we allow the allocations on the latent variables at individual level
also for individuals not providing a response.

In Section 2 we introduce the model and the steps of the maximum like-
lihood estimation. In Section 3 we describe the data collected within the
Japanese Stratification and Social Psychology Survey and in Section 4 we
show the main results.

2. The proposed model

In the following, we deal with a derived response variable and we introduce
the latent class model to account for the missing responses assuming that
they are conditionally independent given the latent variable and the observed
covariates as well as for survey weights for the representativeness of each unit
in the population.

With reference to a random unit drawn from the population of interest let
Yij be the observed derived variable with j, j = 1, . . . , r ordered categories
for individual i, i = 1, . . . , n. This response is obtained by comparing two or
more continuous variables. We assume that the observed response depends
on the underlying unobserved latent variable denoted as Ui which has a dis-
tribution with k support points assuming finite discrete values. The observed
responses are independent one another conditionally to this latent variable.

The first set of parameters in the model is related to the probability to
belong to each latent class. These probabilities may be influenced by time-
specific individual covariates arranged in the vector X where x is a corre-
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sponding realization. We use a baseline category logit model for the following
parameters

log
p(U = u|X = x)

p(U = 1|X = x)
= log

πu|x
π1|x

= β0u + x′β1u, u = 2, . . . , k, (1)

where β0 is an intercept specific of each latent class and β1u is the vector of
parameters that define the influence of the covariates on the distribution of the
latent variable.

Another set of parameters is referred to the manifest part of the model and
is given by the conditional probability of each response category given the
latent variable denoted as

φj|u = p(Yj = y|U = u), u = 1, . . . , k, j = 1, . . . , r.

To account for individual sampling weights denoted as wi, i = 1, . . . , n

such as that provided with survey data we propose to estimate the model
through a weighted log-likelihood. The latter is determined given a sample of
n independent individuals for which we observe the responses y1, . . . , yn as

`(θ) =
n∑
i=1

wi`i(θ), `i(θ) = log p(yi, . . . , yn),

where θ denotes the overall vector of free parameters arranged in a suitable
way. The above quantity is maximized through the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977). It is based on the complete data log-
likelihood and it represents the main tool to estimate the models with latent
variables. For more details see Bartolucci, Farcomeni and Pennoni (2013).

To avoid that parameters referred to the covariates are biased we perform a
two step estimation procedure. First, we estimate the model with the missing
responses and sampling weights excluding the covariates and we execute a
model selection strategy to choose the proper number of latent classes. We
perform the model estimation several times to check for local maxima and
we rely on the AIC criterion (Akaike, 1973). The latter is a measure of the
relative goodness of it of a model, accounting simultaneously for the accuracy

157



ASMOD 2018

and complexity of the model since it is defined on the basis of the following
index

AIC = −2 ˆ̀(θ) + 2#par,

where ˆ̀ denotes the maximum of the log-likelihood and #par denotes the
number of free parameters of the model. Then, by fixing the parameters of
the measurement model we estimate the remaining parameters by consider-
ing the full set of covariates. Standard errors for the parameters estimates
are obtained according to the observed information matrix computed through
numerical methods.

Once all the parameters have been estimated, the estimated a-posteriori
probability to be assigned to a latent class is determined as

q̂u =

∏r
j=1 φ̂j|uπ̂u|x∑k

u=1

∏r
j=1 φ̂j|uπ̂u|x

, u = 1, . . . , k, j = 1, . . . , r. (2)

In this way, we dispose of a suitable allocation rule for each individual to be
assigned to the latent class having the maximum a-posteriori probability.

3. Data

The proposed model is applied to explore the coherent breadwinning ar-
rangement classes and to estimate the effects of the covariates on the underly-
ing latent variable. The data are related to spouses within the households and
were obtained from the past three decades (1985, 1995, 2005) of Japanese
cross-sectional data of the Social Stratification and Social Mobility (SSM)
surveys, and the last decade (2015) of the Japanese Stratification and Social
Psychology (SSP) survey.

The respondents are interviewed and asked a wide range of questions such
as respondents’ socioeconomic background. The derived response variable of
interest is couple’s income provision-role type consisting of five ordinal cat-
egories obtained by comparing the declared incomes (earned and investment
incomes) and it has been constructed on whether a dominant provider exists
and who s/he may be. This response is of primary importance since mar-
riage between man and women in Japan has been considered the only way to
form a family until recently, and a necessary way for women’s financial sur-
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Table 1. Observed and missing frequencies in 2015 for the response variable
weighted with the survey weights: (1) “husband sole provider", (2) “husband
provides majority", (3) “equal providers", (4) “wife provides majority", (5)
“wife sole provider".

Response categories (%) 1 2 3 4 5 Missing
Income provision-role type 22.9 42.2 11.8 5.3 0.6 17.2

vival, social interaction and personal well-being. Moreover, the trend towards
dual-earner families can be detected in recent years but gender division of la-
bor has been accepted as “normal" and still strong in Japan. Many studies,
see Sorensen and McLanahan (1987), argued that women’s economic depen-
dency on men is an important attribute of stratification systems and essential
force in the maintenance of gender inequality.

In Table 1 we report the observed frequencies for the last wave concern-
ing 2,497 couples.5 We notice that despite the continuing rise in Japanese
women’s participation in the economy as well as in many Western societies,
husbands until recently have been the sole or the primary breadwinner in 65%
of the couples and equal-provider couples have been only 11.8%.

The available covariates are chosen according to subject matter knowledge
for example couples’ relative education-level between spouse has been con-
sidered to measures whether wife has equal, higher or lower education level
than husband.6

4. Results

We report the results of the model estimated on the data collected in 2015
due to space limitations. First, we performed a multivariate imputation for
the missing values reported for age and husband income by a using weighted

5 The missing values for the response are due to missing household and/or wife’s income information.
6 List of covariates and corresponding categories: wife’s age: ≤ 32, (32,37], (37,40]; (40,44]; (44,47];
(47,51]; (51,55]; (55,58]; (58,61]; > 61; husband’s age: ≤ 34; (34,39]; (39,43]; (43,46]; (46,50];
(50,54]; (54,58]; (58,61]; (61,64]; > 64; husband’s income in ten thousands yen: ≤ 175, (175,275],
(275,325]; (325,375]; (375,425]; (425,500]; (500,600]; (600,700]; (700,900]; >900; size of the place
of living: major cities; ≥ 200,000; [100,000,200,000]; < 100,000; small towns and villages; number of
children: 0,1,2,> 3; preschool children: no, yes; wife’s educational level: less than high school, high
school, college degree, higher; wife’s relative education: equal, lower, higher than the husband level.
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Table 2. Estimated conditional probabilities (φ̂j|u) under the selected model
of the responses given the latent classes.

Conditional Probabilities (φ̂j|u) 1 2 3 4 5
latent class 1 (UT ) 1.000 0.000 0.000 0.000 0.000
latent class 2 (UN ) 0.179 0.578 0.161 0.074 0.008

mean matching method according with the sampling weights and with the
other covariates as predictive variables. Then, we estimated the latent class
model without covariates with a number of latent classes ranging from 1 to 4
by accounting for different initializations of the EM algorithm7. The model
with two latent classes has the highest maximum log-likelihood at conver-
gence equal to ˆ̀ = −2, 456.7, and a lowest AIC value equal to 4,935.4 with
11 free parameters. The two latent subpopulations are disentangled on the
basis of the estimated probabilities of the manifest model that are reported
in Table 2. According to the results we define the first latent class as that
of Traditional couple (UT ) and the second latent class as that of New couple
(UN ). The first one is characterized by a high degree of gender role special-
ization, strong gender based division of work where the husband specialize
in market-work and wife in domestic work and caregiver. The second one is
comprised mainly of couples where the husband is not the unique provider. A
small proportion of the class is husband sole provider 17% and 58% are the
couples where the husband provide majority. It is important to note that only
16% is the probability of equal providers.

The other step of the analysis is performed by adding the covariates. The
estimates of the logit regression parameters as in Equation (1) affecting the
transition from the traditional couples (UT ) to the new couples (UN ) are re-
ported in Table 3 only for the coefficients which resulted to be significant
due to space limitations (see footnote 2 for the categories of each covariate).
The estimated intercept is positive indicating a general tendency towards the
new type of family UN . We observe that having preschool children shows
the highest estimated coefficient whose negative sign indicates that wife hav-

7 The model is estimated by adapting the functions of the R package LMest (Bartolucci, Pandofi and
Pennoni, 2017)
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Table 3. Estimates of significant logit regression parameters. (Income in ten
thousands yen; significance at 10%(†), 5%∗,1%∗∗).

Estimates UN
β̂0 3.777∗∗

wife age ≤ 32 −1.039∗

husband’s income (600,700] −1.479∗∗

husband’s income (700,900] −1.221∗∗

husband’s income >900 −1.265∗∗

wife’education less than high school −1.085†

wife’education higher than husband’edu. 0.887†

preschool children −2.485∗∗

one child −0.479†

ing preschool children tend to belong to the cluster of traditional couples (the
estimated odd ratio for them is equal to 0.08). Interestingly, husband’s top
incomes determine a lower probability towards the UN .

The spouses’s allocation to each latent class is performed through the es-
timated maximum a-posteriori probability, determined as in Equation (2).
The percentage of couples predicted in the traditional family structure UT is
11.21%. For this subpopulation in Table 4 we show the covariates configura-
tion that can be compare with that obtained for the couples assigned to latent
class UN . We notice that none has husband’s income less then 1,750,000 yen
a year and that 61% of them has preschool children. We expected that the
younger couples support gender egalitarian values more and this would be re-
flected in gender equality in couples earnings structures. However, we found
negative association between age and the probability of being in UN . It is
still not normative for young married women to share equal financial respon-
sibilities within household. This is partly because of the chronic shortages of
regular childcare arrangements.

Comparing these results with those obtained for the data collected at previ-
ous years we found an increase in the proportion of couples in non-traditional
families. One of the reasons why the new families has been more represented
in the last past decade is that being a conventional single-income household
has becoming more difficult due to the recent financial crisis.

161



ASMOD 2018

Table 4. Weighted frequencies with survey weights of the relevant covari-
ates for couples allocated in latent class UT (h.s. high school, h.e. hus-
band’education, see footnote 2 for categories).

Covariates (%) 1 8 9 10
wife’age 29.4
husband’s income 0.0 12.5 11.9 15.2
wife’edu. < h.s. 8.4
wife’edu. > h.e. 6.4
preschool 61.1
one child 40.9

Acknowledgements: Fulvia Pennoni acknowledges the financial support of the grant “Finite

mixture and latent variable models for causal inference and analysis of socio-economic data"

(FIRB – Futuro in ricerca) funded by the Italian Government (RBFR12SHVV_004). Miki

Nakai acknowledges the financial support of the JSPS Grant-in-Aid for Scientific Research

(No. 26380658, No. 17K04103 and No. 16H02045 as part of the SSP project). She thanks

both the SSM and the SSP committee for the permission to use their data.

References

Akaike H. (1973) Information Theory as an Extension of the Maximum Likelihood Prin-
ciple. In BN Petrov, C F (Eds.), Second International Symposium on Information
Theory, 267-281. Budapest: Akademiai Kiado.

Bartolucci F., Farcomeni A., Pennoni F. (2013) Latent Markov Models for Longitudinal
Data, Boca Raton: Chapman and Hall/CRC press.

Bartolucci F., Pandolfi S., Pennoni F. (2017) LMest: An R Package for Latent Markov
Models for Longitudinal Categorical Data, Journal of Statistical Software, 81, 1-38.

Dempster A.P., Laird N.M., Rubin D.B. (1977) Maximum Likelihood from Incomplete Data
via the EM Algorithm (with discussion), Journal of the Royal Statistical Society B,
39, 1-38.

Lazarsfeld P.F., Henry N.W. (1968) Latent Structure Analysis, Houghton Mifflin, Boston.
Nakai M. (2017) Changes in couples’ breadwinning patterns and wife’s economic role in

Japan. In: Greselin, F. et al. (Eds.), Proceedings of the conference of the CLAssifica-
tion and Data Analysis Group, Universitas Studiorum, Mantova, 1-6.

Pennoni F. (2014) Issues on the Estimation of Latent Variable and Latent Class Models,
Scholars’Press, Saarbücken.

Sorensen A., McLanahan S. (1987) Married women economic dependency, 1940-1980,
American Journal of Sociology, 93, 659-687.

162



Permutation tests for stochastic ordering with ordinal data

Fortunato Pesarin∗ , Luigi Salmaso∗∗ , Huiting Huang∗∗∗ ,
Rosa Arboretti∗∗∗∗ , Riccardo Ceccato∗∗∗∗∗

Abstract: This article deals with testing for stochastic dominance and for monotonic stochas-

tic ordering. Several solutions to the univariate case based on restricted maximum likelihood

ratio tests have been proposed in the literature. These solutions are generally criticized since

their asymptotic null distributions are mixtures of chi-squared variables with weights de-

pending on the underlying population distribution F and so the related accuracy is difficult

to assess. Further, testing for stochastic dominance and stochastic ordering in multivariate

cases by likelihood approach is known to be a more difficult problem. By working within

the conditioning on a set of sufficient statistics in the null hypothesis and the nonparametric

combination of dependent permutation tests it is possible to find exact solutions to that kind

of problems. Some solutions, guided by one medical application example, are provided.

Keywords: Conditional inference, Multivariate permutation testing, Stochastic ordering.

1. Introduction and motivating application

Testing of hypotheses for ordinal data is known to be quite a difficult
problem when testing for stochastic dominance and for monotonic stochas-
tic ordering, that is for a set of restricted alternatives. We considered data
coming from Katery and Agresti (2013) concerning a survey on subarach-
noid hemorrhage measured by Glasgow outcome scale, where 210 subjects
received a Placebo, 190 a Low dose of a treatment, 207 a Medium dose and
195 a High dose. Response data, related to the extent of trauma, reported
in the (C = 4) × (K = 5) Table 1, are classified according to 4 increasing
doses of a treatment, v = {Placebo, Low, Medium, High}, each with 5
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ordered categories k = {Death, V eget, Major, Minor, Recov}. It is ex-

Table 1. Dose and Extent of trauma due to subarachnoid hemorrhage

Death Veget Major Minor Recov Total

Placebo 59 25 46 48 32 210
Low 48 21 44 47 30 190

Medium 44 14 54 64 31 207
High 43 4 49 58 41 195
Total 194 64 193 217 134 802

pected that patients taking increasing dose of a drug present non-decreasing
responses X . So, it is required to statistically establish if there is a monotonic
stochastic ordering according to dose on related data. That is, to see whether

XP

d

≤ XL

d

≤ XM

d

≤ XH , with at least one strict inequality. If responses,
instead of ordinal, were quantitative this problem is also termed of isotonic
regression. By defining the analogue of a cumulative distribution function for
responses X at ordered categories c1 ≺ . . . ≺ cK as FX(ck) = Pr{X ≤ ck},
it is required to test for the null hypothesis H0 : FXP = FXM = FXL = FXH
against the set of restricted alternativesH1 : FXP ≥ FXM ≥ FXL ≥ FXH ,with
at least one strict inequality. As dose is ordered, here onwards we will use the
notation: XP = X1, XL = X2, XM = X3, and XH = X4. For C = 2, that
is with a 2×K table, this problem has one quite difficult solution within the
likelihood theory, as that discussed in Colombi and Forcina (2016).

2. The two-sample dominance problem

In order to find suitable general solutions to the testing problems raised
by the medical example, our proposal is to stay within the theory of condi-
tional inference where conditioning is on a set of sufficient statistics in the null
hypothesis for the underlying unknown distribution F . This implies to stay
within the permutation theory and the NPC of dependent tests. Indeed, with
clear meaning of the symbols, indicating with pF (X) the probability density
associated with the population distribution F, the likelihood of any two inde-
pendent samples of IID data, sized n1 and n2, X = (X11, . . . , X1n1 ;X21 . . .,
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X2n2) is pF (X) =
∏n1

i=1 pF1(X1i)
∏n2

i=1 pF2(X2i). This, when F1 = F2, as
stated by the null hypothesis, is invariable with respect to any data rearrange-
ments X∗, i.e. permutations, of observed data X. So, pF (X) = pF (X∗) is
a permutation invariable likelihood. Of course, such a property is not true
under the alternative where F1 6= F2. Moreover, the observed data X in the
null hypothesis is always a set of sufficient statistics for every underlying F .
Thus, the act of conditioning on X makes any inference to be independent
of F . As a matter of fact, the null conditional probability, given X, of ev-
ery event Amember of a suitable family of events A, is independent of F ;
indeed: ∀F and ∀A ∈ A, Pr{X∗ ∈ A;F |X} = Pr{X∗ ∈ A|X}. This
makes permutation inferences distribution-free and nonparametric. In prac-
tice, indicating by X = {X(i), i = 1, . . . , n;n1, n2} the n1 + n2 = n data,
where it is intended that the first n1 data in the list are from the first sample
and the rest from the second, a random permutation X∗ ∈ Π(X) can be ob-
tained as X∗ = {X(u∗i ), i = 1, . . . , n;n1, n2}, where u∗ = {u∗1, . . . , u∗n} is
any random permutation of unit labels u = {1, . . . , n}. Thus, the permuted
table associated with X∗ is computed as {f ∗jk = #(X∗ji ∈ ck), k = 1, ..., K,

j = 1, 2}, where: #(·) is the number of elements of X∗ that satisfy (·);
X∗1i = X(u∗i ) for i ≤ n1 and X∗2i = X(u∗i ) for n1 < i ≤ n. Of course, each
permuted table is such that f·k = f1k + f2k = f ∗1k + f ∗2k = f ∗·k, k = 1, . . . , K,
and so marginal frequencies f·k, as well as cumulative marginal frequencies
N·k = N1k + N2k = N∗·k with Njk =

∑
s≤k fjs, are permutation invariable

quantities.

2.1. The one-dimensional dominance problem

For C = 2, the testing problem related to Example 1, i.e. H0 : X1
d
= X2

against H1 : X1

d
< X2, can be equivalently written as H0 : F1 = F2 ≡⋂K−1

k=1 [F1(ck) = F2(ck)] against H1 : F1 > F2 ≡
⋃K−1
k=1 [F1(ck) ≥ F2(ck)],

with at least one strict inequality. It is worth noting that: i) since CDFs at
last category cK are F1(cK) = F2(cK) = 1, such category does not con-
tain information for discriminating between H0 and H1, so it can be ignored
without loss of generality; ii) according to Roy’s (1953) union-intersection
methodology, the testing problem has been broken-down into K − 1 sim-
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pler sub-problems; iii) clearly, that problem can be properly solved by the
joint analysis of K − 1 dependent partial tests and by their NPC; iv) the non-
parameric property of permutation tests is of great practical importance since
it is not required to specify and to estimate the unknown dependence coeffi-
cients involved on partial tests into which the problem is broken-down. The
K − 1 partial test statistics we propose are:

T ∗k = (F̂ ∗1k − F̂ ∗2k)
[
F̄·k(1− F̄·k)

]− 1
2 , k = 1, . . . , K − 1. (1)

where: F̂ ∗jk = F̂ ∗j (ck) = N∗jk/nj , j = 1, 2, F̄·k = N·k/n are permuta-
tion and marginal empirical distribution functions (EDFs); N∗1k and N∗2k, k =

1, ..., K − 1 are permutation cumulative frequencies obtained from the per-
muted table {f ∗jk, k = 1, ..., K, j = 1, 2}. Note that EDFs F̂jk are maximum
likelihood unbiased estimates of population CDFs Fj(ck), k = 1, ..., K − 1,
j = 1, 2. It is noticeable to observe that: i) each partial test T ∗k is a stan-
dardized comparison of two relative frequencies and so corresponding to a
reformulation of Fisher’s exact probability test; ii) large values of each T ∗k are
significant; iii) the T ∗k are positively dependent; iv) 0 is assigned to expres-
sions with the form 0/0; v) each T ∗k is conditionally optimal with conditional
variance σ2

T ∗k
= 4n2/[n1(n− 1)] not dependent on k; vi) each T ∗k is asymptot-

ically normally distributed. Their NPC can be done according to the methods
discussed in Pesarin and Salmaso (2010). The simplest way of combination
is by their direct sum:

T ∗AD =
K−1∑
k=1

(
F̂ ∗1k − F̂ ∗2k

) [
F̄·k(1− F̄·k)

]− 1
2 . (2)

Such TAD looks like the Anderson-Darling goodness-of-fit test for direc-
tional (dominance) alternatives. TAD is provided with some nice properties
(Pesarin and Salmaso, 2010): i) as all T ∗k are unbiased, it is unbiased; ii) as at
least one of T ∗k is consistent, it is consistent; iii) as its combined acceptance
region is convex, it is admissible; iv) it is an admissible combination of con-
ditionally optimal partial tests. The admissibility of a test T means that there
does not exist any other test G, for the same hypotheses and within the same
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conditions, that is uniformly better than T . The p-value statistic related to the
pair (TAD,X) is defined as λAD = Pr{T ∗AD ≥ T oAD|X}, where the condition-
ing on actual data set X is emphasized and T oAD = TAD(X) represents the
observed value of TAD on data X. According to the general testing rule, if
λAD ≤ α the null hypothesis is rejected at significance level α > 0.

To justify the NPC solution, let us consider the representation, related to a
general problem with K partial tests, R random permutations and combining
function ψ, that follows: where: the first column of first sub-table contains

X X∗1 X∗r X∗R

T o1 T ∗11 · · · T ∗1r · · · T ∗1R
...

...
...

...
T oK T ∗K1 · · · T ∗Kr · · · T ∗KR

↓
T oψ T ∗ψ1 · · · T ∗ψr · · · T ∗ψR

the observed values of K partial tests calculated on the given data set X, i.e.
T ok (X), k = 1, . . . , K; the r-th column contains the values of the K partial
tests at the r-th random permutation X∗r , r = 1, . . . , R. The first element of
second sub-table contains the observed value of a combined tests obtained by
the combining function ψ, i.e. T oψ = ψ(T o1 , . . . , T

o
K), and the r-th element is

the permutation value of combined test ψ at the r-th data permutation.
If the null hypothesis would be true the sub-matrix {T ∗kr}K×R simulates

the K-dimensional null distribution of K partial permutation tests. Accord-
ingly, the sub-vector {T ∗ψr}R simulates the null permutation distribution of
combined test ψ. Thus, the statistic λ̂ψ = #(T ∗ψ ≥ T oψ)/R gives an unbi-
ased and strongly consistent estimate, as R diverges, of the p-value statistic
of combined test Tψ. If the null hypothesis would not be true, at least one of
partial tests would give larger observed values than inH0 and so, if combining
function ψ is non-decreasing in each argument, the p-value statistic satisfies
the relation: λ̂ψH1 ≤ λ̂ψH0 uniformly for every data set X and for every un-
derlying distribution F . The latter implies the unbiasedness property and so
justifies that if λ̂ψ ≤ α then H0 is rejected.

The same unidimensional problem (Pesarin and Salmaso, 2010) can even
be tackled by considering the comparison of two probability generating func-
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tions. A more practical solution is by assigning non-decreasing W scores
to ordered classes, e.g. as ck → wk, with w1 ≤ w2 ≤ . . . ≤ wK , and
at least one strict inequality. In such a case the data are transformed into
wki = wk · 1(X(i) = ck), i = 1, . . . , n, where 1(·) is the counting function.
Thus, the permutation solution is nothing else than a comparison of sample
means of scores: T ∗W = w̄∗2 − w̄∗1. One further solution is by transform-
ing data Xji into ranks Rji = #(X ≤ Xji) or mid-ranks Mji = #(X <

Xji) + #(X = Xji)/2, i = 1, . . . , nj, j = 1, 2, and then to proceed, in the
spirit of Mann and Withney, by comparing mean of ranks and of mid-ranks:
T ∗R = R̄∗2 − R̄∗1 and T ∗M = M̄∗

2 − M̄∗
1 , respectively. Clearly, although unbi-

ased, consistent and easy to interpret, these last three solutions suffers from
the arbitrary substitution of categorical data with numerical quantities.

2.2. The multidimensional dominance problem

Let us again be guided by the two-sample V -dimensional problem. In that
problem, to test for the multidimensional hypotheses we used the formula-

tion: H0 : X1
d
= X2 against the set of restricted alternatives H1 : X1

d
< X2,

where the latter is equivalent to
⋃V
v=1

⋃K−1
k=1 [F1v(ck) ≥ F2v(ck)], with at least

one strict inequality in at least one of 24 points. So a simple extension of
the Anderson-Darling goodness-of-fit type solution, shown for the unidimen-
sional case, with clear meaning of the symbols, leads to the test statistic:

T ∗AD =
V∑
v=1

K−1∑
k=1

(
F̂ ∗1vk − F̂ ∗2vk

) [
F̄·vk(1− F̄·vk)

]− 1
2 , (3)

where V ≥ 2 is the number of variables under study and K ≥ 2 is the
number of ordered categories for responses. According to the unidimensional
formulation, if the alternative is true then at least one summand assumes val-
ues not smaller than in H0. So, that test is unbiased, consistent and admis-
sible. In place of the direct combination of V partial tests T ∗ADv, i.e. one
Anderson-Darling test for each variable, it is possible to think of a more
general combination like T ∗ψ = ψ(T ∗AD1, . . . , T

∗
ADV ). The most commonly

used of combining functions ψ is Fisher’s TF = −2
∑

v log(λADv), where
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λADv is the p-value statistic of T ∗ADv. Similarly to the unidimensional setting,
the multidimensional problem (Pesarin and Salmaso, 2010) can, however, be
tackled by assigning non-decreasing Wt scores to ordered classes, e.g. as
ctk → wtk, k = 1, . . . , K, t = 1, . . . , V , where wt1 ≤ . . . ≤ wtK , with at least
one strict inequality ∀t. In such a case the data are transformed into wtki =

wtk ·1(Xtji = ctk). Thus, the permutation solution is nothing else than a com-
parison of sample means of scores: T ∗ψW = ψ[(w̄∗12− w̄∗11), . . . , (w̄∗V 2− w̄∗V 1)].
And so on also for T ∗ψR and T ∗ψM with ranks and mid-ranks, respectively.

2.3. The C-sample stochastic ordering problem

With reference to the first example and in accordance with the Jonckheere-
Terpstra idea, we may equivalently break down the 4-sample testing prob-
lem into three two-sample ones. To be specific, let us imagine that for any
j ∈ {1, . . . , C − 1}, the whole data set is divided into two pooled pseudo-
groups, where the first is obtained by pooling together data of the first j
ordered groups and the second by pooling the rest. To this end, we define
the first pooled pseudo-group as Y1(j) = X1

⊎
. . .
⊎

Xj and the second as
Y2(j) = Xj+1

⊎
. . .
⊎

XC , j = 1, . . . , C − 1, where
⊎

is the symbol for
pooling data into one pseudo-group and Xj = {Xji, i = 1, . . . , nj} is the
data set in the jth group.

In the null hypothesis, data from every pair of pseudo-groups are exchange-
able because related pooled variables satisfy the relationships Y1(j)

d
= Y2(j),

j = 1, . . . , C−1. In the alternative we see that Y1(j)

d

≤ Y2(j), for each j, which
corresponds to the stochastic dominance between each pair of pseudo-groups.
This suggests that we express the monotonic stochastic ordering hypothesis

into the equivalent form H0 : {
⋂C−1
j=1 (Y1(j)

d
= Y2(j))} and H1 : {

⋃
j(Y1(j)

d

≤
Y2(j))}, emphasizing a break-down into a set of sub-hypotheses. So this prob-
lem is solved by combining the C − 1 partial tests:

T ∗(j) =
K−1∑
k=1

(
F̂ ∗1(j)k − F̂ ∗2(j)k

) [
F̄·(j)k(1− F̄·(j)k)

]− 1
2 , j = 1, . . . , C − 1. (4)

According to our experience, the most suitable combining functions for this
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problem are Fisher’s and Liptak’s. Since in the stochastic ordering alternative
all C − 1 partial tests contain a positive non-centrality quantity, i.e. are all
in their respective sub-alternative, Tippett’s combination is less sensitive than
others.

Of course, if V > 1 variables were involved, the multivariate stochastic
ordering solution would require one stochastic ordering partial test for each
variable v = 1, . . . , V . So the global test would be the NPC combination of:

T ∗(j)V =
V∑
v=1

K−1∑
k=1

(
F̂ ∗1v(j)k − F̂ ∗2v(j)k

) [
F̄·v(j)k(1− F̄·v(j)k)

]− 1
2 , j = 1, . . . , C−1.

(5)
Table below shows the results of our analyses with the motivating example
described in the first paragraph, based on R = 100 000 random permutations,
for tests: Anderson-Darling T ∗AD, on scores T ∗W , and on mid-ranks TM , and
their combinations: T ′′D direct, T ′′F Fisher’s, T ′′L Liptak’s and T ′′T Tippett’s.
Note that W scores are stated as (w1 = 1, w2 = 2, w3 = 3, w4 = 4, w5 =

5). The NPC of dependent tests method is suitable and effective for many
multivariate testing problems which are very difficult or even impossible to
solve within likelihood parametric frameworks.

T ∗(1) T ∗(2) T ∗(3) T
′′
D T

′′
F T

′′
L T

′′
T

λ̂AD(j) 0.0141 0.0025 0.0074 0.0012 0.0015 0.0012 0.0068
λ̂W (j) 0.0131 0.0021 0.0076 0.0010 0.0012 0.0010 0.0053
λ̂M(j) 0.0144 0.0024 0.0062 0.0011 0.0014 0.0011 0.0068

References

Colombi R., Forcina A. (2016) Testing under order restrictions in contingency tables, Metrika,
79, 73-90.

Kateri K., Agresti A. (2013) Bayesian inference about odds ratio structure in ordinal con-
tingency tables, Environmetrics, 24, 281-288.

Pesarin F., Salmaso L. (2010) Permutation Tests for Complex Data: Theory, Applications
and Software, Wiley & Sons, Chichester, UK.

170



Consensus measures for preference rankings with ties: an
approach based on position weighted Kemeny distance

Antonella Plaia∗ , Mariangela Sciandra ∗∗ , Simona Buscemi ∗∗∗

Abstract: Preference data are a particular type of ranking data where some subjects (voters,

judges, ...) give their preferences over a set of alternatives (items). It happens, in most

of the real cases, that some items receive the same preference by a judge, giving raise to

a ranking with ties. The purpose of our paper is to investigate on the consensus between

rankings with ties taking into account the importance of swapping elements belonging to the

top (or to the bottom) of the ordering (position weights). Combining the structure of the

τx proposed by Emond and Mason and the class of weighted Kemeny-Snell distances, we

propose a position weighted rank correlation coefficient to compare rankings with ties. The

one-to-one correspondence between the weighted distance and the rank correlation coefficient

holds, analytically speaking, using both equal and decreasing weights.

Keywords: Weighted rank correlation, Weighted Kemeny distance, Position weights.

1. Introduction

Ranking is one of the most simplified cognitive processes useful for peo-
ple to handle many aspects in their life. When some subjects are asked to
indicate their preferences over a set of alternatives (items), ranking data are
called preference data. Therefore, ranking data arise when a group of n indi-
viduals (judges, experts, voters, raters etc) shows their preferences on a finite
set of items (m different alternatives of objects, like movies, activities and so
on). If the m items, labeled 1, . . .m, are ranked in m distinguishable ranks,
a complete ranking or linear ordering is achieved (Cook, 2006): this ranking
a is a mapping function from the set of items {1, . . . ,m} to the set of ranks
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{1, . . . ,m}, endowed with the natural ordering of integers, where a(i) is the
rank given by the judge to item i. The ranking a is, in this case, one of the
m! possible permutations of m elements, containing the preferences given by
the judge to the m items. When some items receive the same preference, then
a tied ranking or a weak ordering is obtained. In real situations, it can hap-
pen that not all items are ranked: partial rankings, when judges are asked to
rank only a subset of the whole set of items, and incomplete rankings, when
judges can freely choose to rank only some items. In order to get homo-
geneous groups of subjects having similar preferences, it’s natural to mea-
sure the spread between rankings through dissimilarity or distance measures
among them. Distances between rankings have received a growing consid-
eration in the past few years. Usual examples of metrics in this framework
are Kendall’s and Spearman’s. In 1962 Kemeny introduced a metric defined
on linear orders, known as Kemeny distance (or metric), later generalized to
the framework of weak orders by Cook et al in 1986, which satisfies the con-
straints of a distance measure suitable for rankings. The Kemeny distance
(dK) between two rankings a and b is a city-block distance defined as:

dK(a, b) =
1

2

m∑
i=1

m∑
j=1

|aij − bij| (1)

where aij and bij are the generic elements of the m×m score matrices asso-
ciated to a and b respectively, assuming the following values:

aij, bij =


1 if i is preferred to j

0 if i = j or if i is tied with j

−1 if j is preferred to i

(2)

Considering the usual relation between a distance d and its corresponding cor-
relation coefficient τ = 1− 2d/Dmax, where Dmax is the maximum distance,
dK is in a one-to-one correspondence to the rank correlation coefficient τx
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proposed by (Emond and Mason, 2002), defined as:

τx(a, b) =

∑m
i=1

∑m
j=1 a

′
ijb
′
ij

m(m− 1)
(3)

where a′ij and b′ij are the generic elements of the m×m score matrices asso-
ciated to a and b respectively, assuming the following values

a
′

ij, b
′

ij =


1 if i is preferred to or tied with j

0 if i = j

−1 if j is preferred to i

(4)

Distances and correlations are the two possible approach to a consensus rank-
ing problem: given n rankings, full or weak, of m items, what best represents
the consensus opinion? This consensus is the ranking that shows the maxi-
mum correlation, or equivalently the minimum distance, with the whole set
of n rankings.

2. Weighted distances

Kumar and Vassilvitskii (2010) introduced two aspects essential for many
applications involving distances between rankings: positional weights and el-
ement weights. In short, i) the importance given to swapping elements near
the head of a ranking could be higher than the same attributed to elements be-
longing to the tail of the list or ii) swapping elements similar between them-
selves should be less penalized than swapping elements which aren’t similar.
In this paper, we deal with case i) and consider the weighted version of the
Kemeny metric, since the Kemeny metric is not sensitive towards where the
disagreement between two rankings occurs. For measuring the weighted dis-
tances, the non-increasing weights vector w = (w1, w2, ..., wm−1) constrained
to
∑m−1

i=1 wi = 1 is used, where wi is the weight given to position i in the
ranking. Given two generic rankings of m elements, a and b, the weighted
Kemeny distance is defined by García-Lapresta and Pérez-Román (2010) as
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follows:

dwK(a, b) =
1

2

 m∑
i,j=1
i<j

wi|a(σ1)
ij − b

(σ1)
ij |+

m∑
i,j=1
i<j

wi|b(σ2)
ij − a

(σ2)
ij |

 , (5)

where (σ1) states to follow the a ranking and (σ2), similarly, orders according
to b. More specifically, b(σ1)

ij is the score matrix of the ranking b reordered
according to a, a(σ2)

ij is the score matrix of the ranking a reordered according
to b and a(σ1)

ij = b
(σ2)
ij is the score matrix of the linear order 1, 2, ...,m (see

Plaia and Sciandra, 2017 for more details).

3. A new weighted rank correlation coefficient

Recently we proposed a new rank correlation coefficient (Plaia et al, 2018),
suitable for position weighted rankings which handles linear orders. In this
paper, we propose its generalization to cope with the presence of ties. Com-
bining the weighted Kemeny distance proposed by García-Lapresta and Pérez-
Román (2010) and the extension of τx provided by Emond and Mason (2002),
we propose a new rank correlation coefficient working with a couple of score
matrices. Let’s define the generic (i, j) element of the score matrices a′ij and
a∗ij related to a ranking a as follows:

a
′
ij , b

′
ij =


1 if i is preferred to or tied with j

0 if i = j

−1 if j is preferred to i

a∗ij , b
∗
ij =


1 if i is preferred to j

0 if i = j

−1 if j is preferred to or tied with i
(6)

Our new rank correlation coefficient uses both these score matrices (the
corresponding element of the score matrices are equal to 1 and to −1 accord-
ing to the considerations in Emond and Mason (2000), secc. 38, 39) and is
defined as:

τwx (a, b) =

∑m
i<j(a

′σ1
ij b

′σ1
ij + a

′σ2
ij b

′σ2
ij + a∗σ1

ij b
∗σ1
ij + a∗σ2

ij b
∗σ2
ij )wi

2Max[dwK ]
, (7)

where the denominator represents twice the maximum value of the Kemeny
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weighted distances (García-Lapresta and Pérez-Román, 2010), equal to:

Max[dwK(a, b)] = 2
m−1∑
i=1

(m− i)wi. (8)

4. Correspondence between distance and correlation

We will demonstrate that eq. (7) is the correlation coefficient correspond-
ing to the distance (5) through the straightforward linear transformation:∑m

i<j(a
′σ1
ij b

′σ1
ij + a

′σ2
ij b

′σ2
ij + a∗σ1

ij b
∗σ1
ij + a∗σ2

ij b
∗σ2
ij )wi

2Max[dwK ]
= 1− 2dwK

Max[dwK ]

or equivalently

m∑
i<j

(a
′σ1
ij b

′σ1
ij + a

′σ2
ij b

′σ2
ij + a∗σ1

ij b
∗σ1
ij + a∗σ2

ij b
∗σ2
ij )wi = 2Max[dwK ]− 4dwK (9)

whereMax[dwK ] and dwK are defined in Eq. (8) and in Eq. (5) respectively, and
we use the matrix representation of a ranking a of m objects as in Eq. (2) for
computing dwK and the two different score matrices of Eq. (6) for calculating
τwx . According to Emond and Mason (2002), if two rankings a and b agree
except for a set S of k objects, which is a segment of both, then dwK(a, b) may
be computed as if these k objects were the only objects being ranked. As a
consequence, to prove the equality in (9) we will show that for each pair of
objects i and j:

a
′σ1
ij b

′σ1
ij +a

′σ2
ij b

′σ2
ij +a∗σ1

ij b∗σ1
ij +a∗σ2

ij b∗σ2
ij = 4(m− i)− 2

[
|aσ1
ij − b

σ1
ij |+ |b

σ2
ij −a

σ2
ij |
]

(10)

In Eq. (10) the weights wi have been omitted from both the sides. There
are nine possible combinations of orderings for item i and j between voters
A and B, but only four distinct cases must be considered. The other five
are equivalent to one of these four through a simple relabeling of the rankers
and/or the objects. (Emond and Mason, 2002).
Case 1. Both A and B prefer object i to j. The Kemeny-Snell matrix values
are: aσ1

ij = bσ1
ij = aσ2

ij = bσ2
ij = 1. The τwx score matrix values are: a

′σ1
ij =

b
′σ1
ij = a

′σ2
ij = b

′σ2
ij = a∗σ1

ij = b∗σ1
ij = a∗σ2

ij = b∗σ2
ij = 1. Hence, the equality in
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equation (10) holds:
1 · 1 + 1 · 1 + 1 · 1 + 1 · 1 = 4− 2[|1− (1)|+ |1− (1)|].
Case 2. A prefers object i to j and B prefers the two objects as tied. The
Kemeny-Snell matrix values are: aσ1

ij = aσ2
ij = 1 and bσ1

ij = bσ2
ij = 0. The τwx

score matrix values are: a
′σ1
ij = b

′σ1
ij = a

′σ2
ij = b

′σ2
ij = a∗σ1

ij = a∗σ2
ij = 1 and

b∗σ1
ij = b∗σ2

ij = −1. Hence, the equality in equation (10) holds:
1 · 1 + 1 · 1 + 1 · (−1) + 1 · (−1) = 4− 2[|1− 0|+ |1− 0|].
Case 3. A prefers object i to j and B prefers j to object i. The Kemeny-Snell
matrix values are: aσ1

ij = bσ2
ij = 1 and aσ2

ij = bσ1
ij = −1. The τwx score matrix

values are: a
′σ1
ij = b

′σ2
ij = a∗σ1

ij = b∗σ2
ij = 1 and a

′σ2
ij = b

′σ2
ij = a∗σ2

ij = b∗σ1
ij =

−1. Hence, the equality in equation (10) holds:
1 · (−1) + (−1) · 1 + 1 · (−1) + (−1) · (1) = 4− 2[|1− (−1)|+ |1− (−1)|].
Case 4. Both A and B rank the objects i and j as tied. The Kemeny-Snell
matrix values are: aσ1

ij = bσ2
ij = aσ2

ij = bσ1
ij = 0. The τwx score matrix values

are: a
′σ1
ij = b

′σ1
ij = a

′σ2
ij = b

′σ2
ij = 1 and a∗σ1

ij = b∗σ1
ij = a∗σ2

ij = b∗σ2
ij = −1.

Hence, the equality in equation (10) holds:
1 · (1) + (1) · 1 + 1 · (1) + (1) · (1) = 4− 2[|0− 0|+ |0− 0|].

5. Minimum and Maximum values of τwx

From the demonstrations in sec. 4 τwx can be maximum, and equal to 1, if
and only if for all i and j only Case 1 or only Case 4 are observed. Therefore,
differently from what happens with Kendall τb (see Emond and Mason, 2002,
sect 3.3), τwx is maximum even when a generic all tied ranking is compared
with itself. Analogously, τwx can be minimum, and equal to -1, if and only if
for all i and j only Case 3 occurs.

6. Correspondence between weighted and unweighted measures

For equal weights assigned to the items (wi = 1
m−1

, for each i = 1, 2, ...,m−
1) the weighted distance is proportional to the classical Kemeny distance, ac-
cording to the number of items:

dwx =
dx

m− 1
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Proof. Referring to the cases listed in Section 4:

Case 1. dwx = 1
2
[|1−(1)|+|1−(1)|]wi = 0 and dx = 1

2
[|0−0|+|0−0|] = 0

Case 2. dwx = 1
2
[|1−0|+ |1−0|]wi = 1

m−1
nd dx = 1

2
[|1−0|+ |1−0|] = 1

Case 3. dwx = 1
2
[|1− (−1)|+ |1− (−1)|]wi = 2

m−1
nd dx = 1

2
[|1− (−1)|+

|1− (−1)|] = 2

Case 4. dwx = 1
2
[|0− 0|+ |0− 0|]wi = 0 and dx = 1

2
[|0− 0|+ |0− 0|] = 0

Corollary Since τx ↔ dK and τwx ↔ dwK , then the weighted rank corre-
lation coefficient is equivalent to the rank correlation coefficient defined by
Emond and Mason, when equal importance is given to the positions occupied
by the items:

τwx = τx, with wi =
1

m− 1
∀i = 1, 2, ..m− 1

7. Consensus ranking

The proposed weighted correlation coefficient can be used to deal with a
consensus ranking problem: given n rankings, full or weak, of m items, what
best represents the consensus opinion? This consensus is the ranking that
shows the maximum correlation, with the whole set of n rankings. Given a
nxm matrix X, whose l-th row represents the ranking associated to the l-th
judge, the consensus ranking, i.e. the ranking c that best represents the matrix
X, is that ranking that maximizes the following expression:

Max

n∑
l=1

∑m
i<j(x

′σl
ij c

′σl
ij + x

′σc
ij c

′σc
ij + x∗σlij c

∗σl
ij + x∗σcij c

∗σc
ij )wi

2Max[dwK ]
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8. Conclusions

In this paper, we provided a rank correlation coeffient τwx for weak or-
derings, as an extension of τwx for linear orderings (Plaia et al, 2018). We
demonstrated the correspondence between τwx and the weighted Kemeny dis-
tance and, finally, we showed that the weighted rank correlation coefficient τwx
is equal to the Emond and Mason rank correlation coefficient τx in the case
of tied rankings and wi = 1

m−1
for all i. Our future purpose is the extension

and the implementation in R of the branch and bound algorithm proposed in
(Plaia et al 2018) for linear orders to the case of weak orderings.
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Simultaneous clustering and dimensional reduction
of mixed-type data

Monia Ranalli∗ , Roberto Rocci∗∗

Abstract: In real applications, it is very common to have the true clustering structure

masked by the presence of noise variables and/or dimensions. A mixture model is proposed

for simultaneous clustering and dimensionality reduction of mixed-type data: the continuous

and the ordinal variables are assumed to follow a Gaussian mixture model, where, as regards

the ordinal variables, it is only partially observed. To recognize discriminative and noise

dimensions, the variables are considered to be linear combinations of two independent sets

of latent factors where only one contains the information about the cluster structure while

the other one contains noise dimensions. In order to overcome computational issues, the

parameter estimation is carried out through an EM-like algorithm maximizing a composite

log-likelihood based on low-dimensional margins.

Keywords: Mixture models, Composite likelihood, EM algorithm.

1. Introduction

The aim of cluster analysis is to partition the data into meaningful groups
which should differ considerably from each other. The cluster analysis is
made more difficult by the presence of mixed-type data (ordinal and contin-
uous variables) combined by the presence of dimensions (named noise) that
are uninformative for recovering the groups and could obscure the true cluster
structure. It follows that there are two main points to be addressed: combin-
ing continuous with ordinal variables; taking into account the presence of
noise variables/dimensions. As regards the first point, the literature on clus-
tering for continuous data is rich and wide; the most commonly clustering
model-based used is the finite mixture of Gaussians (McLachlan et al., 2016).
Differently, that one developed for categorical data is still limited. Models
used for ordinal data mainly adopt two approaches developed in the factor
∗University of Tor Vergata, monia.ranalli@uniroma2.it
∗∗University of Tor Vergata, roberto.rocci@uniroma2.it
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analysis framework: Item Response Theory (IRT) (see e.g. Bartholomew et
al. (2011), Bock and Moustaki (2007)), and the Underlying Response Vari-
able (URV) (see e.g. Jöreskog, 1990; Lee et al., 1990; Muthén, 1984). In the
URV approach, the ordinal variables are seen as a discretization of continuous
latent variables jointly distributed as a finite mixture; examples are: Everitt
(1988), Lubke and Neale (2008), Ranalli and Rocci (2016a, 2017a, 2017b).
However, this makes the maximum likelihood estimation rather complex be-
cause it requires the computation of many high dimensional integrals. The
problem is usually solved by approximating the likelihood function. In this
regard we mention some useful surrogate functions, such as the variational
likelihood (Gollini and Murphy, 2014) or the composite likelihood (Ranalli
and Rocci (2016a, 2017a, 2017b)). Although it is possible to cluster via a
model based approach continuous or ordinal variables separately, combin-
ing both into a common framework may raise some issues. Following the
URV approach, Everitt (1988) and Ranalli-Rocci (2017a) proposed a model
according to which both the continuous and the categorical ordinal variables
follow a Gaussian mixture model, where the ordinal variables are only par-
tially observed through their ordinal counterparts. This satisfies the two main
requirements: dealing with ordinal data properly and modelling dependen-
cies between ordinal and continuous variables. As regards the presence of
noise variables, different approaches exist in literature. Several techniques
for simultaneous clustering and dimensionality reduction (SCR) have been
proposed in a non-model based framework for quantitative (e.g.: Rocci et al.,
2011; Vichi and Kiers, 2001) or categorical data (e.g.: Hwang et al., 2006;
Van Buuren et al., 1989). There are also approaches based on a family of
mixture models which fits the data into a common discriminative subspace
(see e.g. Bouveyron and Brunet, 2012; Kumar and Andreou, 1998; Ranalli
and Rocci, 2017b). The key idea is to assume a common latent subspace
to all groups that is the most discriminative one. This allows to project the
data into a lower dimensional space preserving the clustering characteristics
in order to improve visualization and interpretation of the underlying struc-
ture of the data. The model can be formulated as a finite mixture of Gaus-
sians with a particular set of constraints on the parameters. Combining all
pieces together, following the URV approach, in our proposal the continuous
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and the ordinal variables are assumed to follow a heteroscedastic Gaussian
mixture model, where, as regards the ordinal variables, it is only partially
observed. To recognize discriminative and noise dimensions, these variables
are considered to be linear combinations of two independent sets of latent
factors where only one contains the information about the cluster structure,
defining a discriminative subspace, distributed as a finite mixture of Gaus-
sians. The other one contains noise dimensions distributed as a multivariate
normal. The model specification is parsimonious and is able to identify a re-
duced set of discriminative latent factors/dimensions even when there are no
noise variables to be detected. The main drawback of this model is that, in
practice, it cannot be estimated through a full maximum likelihood approach,
due to the presence of multidimensional integrals making the estimation time
consuming. To overcome this issue, we propose to replace this cumbersome
likelihood with a surrogate objective function, easier to maximize, that is the
product of marginal likelihoods. It is a composite likelihood method (Lindsay,
1988; Varin et al., 2011) where surrogate functions are defined as the prod-
uct of marginal or conditional events. In particular, our proposals is based on
the existing results within a mixture model framework Ranalli-Rocci (2016a,
2017a, 2017b). It consists of replacing the joint likelihood with all possible
marginals, like bivariate marginal distributions of ordinal variables and the
marginal distributions of one ordinal variable and all continuous variables.

2. Model specification

Let x = [x1, . . . , xO]′ and yŌ = [yO+1, . . . , yP ]′ be O ordinal and Ō =
P − O continuous variables, respectively. The associated categories for each
ordinal variable are denoted by ci = 1, 2, . . . , Ci with i = 1, 2, . . . , O. Fol-
lowing the underlying response variable approach (URV) developed within
the SEM framework (see e.g. Jöreskog, 1990; Lee et al., 1990; Muthén,
1984), the ordinal variables x are considered as a categorization of a contin-
uous multivariate latent variable yO = [y1, . . . , yO]′. According to the URV,
the joint distribution of x and yŌ can be constructed as follows. The latent re-
lationship between x and yO is explained by the threshold model, xi = ci ⇔
γ

(i)
ci−1 ≤ yi < γ

(i)
ci , where −∞ = γ

(i)
0 < γ

(i)
1 < . . . < γ

(i)
Ci−1 < γ

(i)
Ci

= +∞
are the thresholds defining the Ci categories collected in a set Γ whose ele-
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ments are given by the vectors γ(i). To accommodate both cluster structure
and dependence within the groups, we assume that y = [yO′, yŌ′]′ follows a
heteroscedastic Gaussian mixture, f (y) =

∑G
g=1 pgφp (y;µg,Σg), where the

pg’s are the mixing weights and φp (y;µg,Σg) is the density of a P -variate
normal distribution with mean vector µg and covariance matrix Σg. Let us
set ψ = {p1, . . . , pG,µ1, . . . ,µG,Σ1, . . . ,ΣG,Γ} ∈ Ψ, where Ψ is the pa-
rameter space. For a random i.i.d. sample of size N , (x1, yQ̄1 ), . . . , (xN , yQ̄N),
the log-likelihood is

`(ψ) =
N∑
n=1

log

 G∑
g=1

pgφŌ(yŌn ;µŌg ,Σ
Ō
g )πn

(
µO|Ōn;g ,Σ

O|Ō
g ,Γ

) , (1)

where, with obvious notation

πn

(
µO|Ōn;g ,Σ

O|Ō
g ,Γ

)
=

∫ γ
(1)
c1

γ
(1)
c1−1

· · ·
∫ γ

(O)
cO

γ
(O)
cO−1

φO(u;µO|Ōn;g ,Σ
O|Ō
g )du

µO|Ōn;g = µOg + ΣOŌ
g (ΣŌŌ

g )−1(yŌn − µŌg )

ΣO|Ō
g = ΣOO

g −ΣOŌ
g (ΣŌŌ

g )−1ΣŌO
g ,

πn

(
µ
O|Ō
n;g ,Σ

O|Ō
g ,γ

)
is the conditional joint probability of response pattern

xn = (c
(1)
1 , . . . , c

(O)
O ) given the cluster g and the continuous variables yŌn . Fi-

nally pg is the probability of belonging to group g subject to pg > 0 and∑G
g=1 pg = 1. In order to identify the discriminative dimensions, it is assumed

that there is a set of P latent factors ỹ, formed of two independent subsets. In
the first one, there are Q (with Q ≤ P ) factors that have some clustering in-
formation distributed as a mixture of Gaussians with class conditional means
and variances equal to E(ỹQ | g) = ηg and Cov(ỹQ | g) = Ωg, respectively.
In the second set there are Q̄ = P − Q noise factors defining the so-called
noise dimensions, that are independent of ỹQ and their distribution does not
vary from one class to another: E(ỹQ̄ | g) = η0 and Cov(ỹQ̄ | g) = Ω0. The
link between ỹ and y is given by a non-singular P × P matrix A, as y = Aỹ.
The final step is to identify the variables that could be considered as noise.
Intuitively yp is a noise variable if it is well explained by ỹQ̄. Exploiting the
independence between ỹQ and ỹQ̄, it is possible to compute proportions of
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each variable’s variance that can be explained by the noise factors, and by
one’s complement, the proportions of each variable’s variance that can be ex-
plained by the discriminative factors.

2.1. Construction of surrogate functions

The presence of multidimensional integrals makes the maximum likeli-
hood estimation computationally demanding and infeasible as the number of
observed ordinal variables increases. To overcome this, a composite likeli-
hood approach is adopted (Lindsay, 1988). It allows us to simplify the prob-
lem by replacing the full likelihood with a surrogate function. As suggested
in Ranalli-Rocci (2016a, 2017a, 2017b) within a similar context, the full log-
likelihood could be replaced by the sum of two estimating-block functions:
O(O − 1)/2 bivariate marginals of ordinal variables; O marginal distribu-
tions each of them composed of one ordinal variable and the Ō continuous
variables. This leads to the following surrogate function

c`(ψ) =
N∑
n=1

O−1∑
i=1

O∑
j=i+1

Ci∑
ci=1

Cj∑
cj=1

δ(ij)
ncicj log

 G∑
g=1

pgπ
(ij)
cicj (µ

(ij)
g ,Σ(ij)

g ,Γ(ij))


+

N∑
n=1

O∑
j=1

Cj∑
cj=1

δ(j)
ncj log

 G∑
g=1

pgπ
(j|Ō)
cj (µ(j|Ō)

n;g , σ(j|Ō)
g ,Γj)φŌ(yŌn ;µŌg ,Σ

ŌŌ
g )

 ,
where now, after the reparameterization induced by the reduction model, the

set of parameters is ψ = {p1, . . . , pG,η0,η1, . . . ,ηG,Ω0,Ω1, . . . ,ΩG,A,γ},
δ

(ij)
ncicj is a dummy variable assuming 1 if the n-th observation presents the

combination of categories ci and cj for variables xi and xj respectively, 0 oth-
erwise; similarly δ(j)

ncj is a dummy variable assuming 1 if the n-th observation
presents category cj for variable xj , 0 otherwise; π(ij)

cicj(µ
(ij)
g ,Σ

(ij)
g ,Γ(ij)) is the

probability under the model obtained by integrating the density of a bivari-
ate normal distribution with parameters (µ

(ij)
g ,Σ

(ij)
g ,Γ(ij)) between the corre-

sponding threshold parameters. On the other hand, π(j|Q̄)
cj (µ

(j|Q̄)
n;g , σ

(j|Q̄)
g ,Γ(j))

is the conditional probability of variable xj of being in category cj given all
the continuous variables yQ̄. Finally, µg = E(y | g) = AE(ỹ | g), while
Σg = Cov(y | g) = ACov(ỹ | g)A′, as specified previously. The parame-
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ter estimates are carried out through an EM-like algorithm, that works in the
same manner as the standard EM.

2.2. Classification model selection and identifiability

When we adopt a composite likelihood approach, since we do not compute
the joint distribution for each observation, it is not possible anymore to assign
the observation to the component with the maximum a posteriori probability
(MAP criterion) without further computations. To solve the problem we fol-
low the CMAP criterion (Ranalli-Rocci, 2017a, 2017b), according to which
the observation is assigned to the component with the maximum scaled com-
posite fit (scaled by the corresponding mixing weight). As regards model
selection, the best model is chosen by minimizing the composite version of
penalized likelihood selection criteria like BIC or CLC (see Ranalli-Rocci,
2016b and references therein). Finally, as regards identifiability, within a full
maximum likelihood approach, it is well known that a sufficient condition
for local identifiability is given by the non singularity of the information ma-
trix; while a necessary condition is that the number of parameters must be
less than or equal to the number of canonical parameters. Adopting a com-
posite likelihood approach, the sufficient condition should be reformulated
by investigating the Godambe information matrix, that is, the analogous of
the information matrix in composite likelihood estimation. However, as far
as we know, such modification has not been formally investigate yet. About
the necessary condition, we note that the number of essential parameters in
the block of ordinal variables equals the number of parameters of a log linear
model with only two factor interaction terms. Thus it means that we can es-
timate a lower number of parameters compared to a full maximum likelihood
approach. Furthermore, under the underlying response variable approach, the
means and the variances of the latent variables are set to 0 and 1, respectively,
because they are not identified. This identification constraint individualizes
uniquely the mixture components (ignoring the label switching problem), as
well described in Millsap and Yun-Tein (2004). This is sufficient to esti-
mate both thresholds and component parameters if all the observed variables
have three categories at least and when groups are known. Given the partic-
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ular structure of the mean vectors and covariance matrices, it is preferable to
adopt an alternative, but equivalent, parametrization. This is analogous to that
one used by Jöreskog and Sörbom (1996); it consists in setting the first two
thresholds to 0 and 1, respectively. This means that there is a one-to-one cor-
respondence between the two sets of parameters. If there is a binary variable,
then the variance of the corresponding latent variable is set equal to 1 (while
its mean should be still kept free). Finally, we note that the model has the
same rotational freedom that characterizes the classical factor analysis model.
In other words, writing A = [A1,A2] according to ỹ = [ỹQ′, ỹQ̄′]′ , only the
subspaces generated by the columns of A1 and A2 are identified. In order to
estimate such subspaces, we impose some constraints on the model param-
eters, in complete analogy with what is usually done in the factor analysis
model. In this way, we select a particular solution, one which is convenient
to find, and leave the experimenter to apply whatever rotation he thinks desir-
able, as suggested by Lawley and Maxwell (1962). In particular, we require
a spherical distribution for the noise factors, i.e. Ω0 = I, and informative
factors in the first cluster, i.e. Ω1 = I. Such constraints still allow a rota-
tional freedom by orthonormal matrices. This can be eliminated by requiring
a “lower" triangular form for the two loading matrices. In general, A1 and A2

have a lower triangular matrix in the first Q and (P − Q) rows, respectively.
Of course, after the estimation the parameter matrices can be rotated to en-
hance the interpretation.
Further details will be given in the extended version of the paper along with
simulation and real data results to show the effectiveness of the proposal.
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Bi-Factor MIRT Observed-Score Equating under the NEAT
design for tests with several content areas

Valentina Sansivieri∗ , Mariagiulia Matteucci∗∗ , Stefania Mignani∗∗∗

Abstract: Traditional item response theory (IRT) equating procedures are based on unidi-

mensionally scored test forms. In this work, we propose an observed-score equating proce-

dure based on the bi-factor extension of the three-parameter logistic (3PL) model under the

nonequivalent groups with anchor test (NEAT) design. The bi-factor 3PL model is chosen be-

cause it allows for the presence of overall and specific traits and the guessing parameter which

are especially important in educational assessment. The NEAT design is chosen because,

when an anchor test is available, it allows to work with nonequivalent groups. The results

obtained by using both simulated and real data show that, in presence of bidimensionality,

the proposed equating procedure is more efficient than the unidimensional observed-score

equating.

Keywords: Equating, Bi-factor, NEAT design.

1. Introduction

Test equating is used to adjust scores on test forms so that scores on the
forms can be used interchangeably (Kolen and Brennan, 2014). Several de-
signs can be used in test equating: single-group (Kolen and Brennan, 2014),
equivalent groups (Kolen and Brennan, 2014), nonequivalent groups with an-
chor test (Kolen and Brennan, 2014) and nonequivalent groups with covariates
(Wiberg and Bränberg, 2015; Sansivieri, 2017). In this study we will use the
the nonequivalent groups with anchor test (NEAT) design, under which we
assume that two nonequivalent groups of examinees take two test forms (one
form for each group) which have a set of common items (the anchor).

Lord (1980) defined item response theory (IRT) as a paradigm for the de-
sign, analysis, and scoring of tests, questionnaires, and similar instruments
∗University of Bologna, valentina.sansivier2@unibo.it
∗∗University of Bologna, m.matteucci@unibo.it
∗∗∗University of Bologna, stefania.mignani@unibo.it
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measuring abilities, attitudes, or other variables and he introduced IRT equat-
ing to compare different test scores from different forms when IRT is used
to assemble tests. By using IRT we obtain item parameters and examinee
ability estimates and it could be necessary to put these estimates on the same
scale: this process is called scale linking (Mislevy, 1992). Kolen and Brennan
(2014) underline that scale linking is necessary when we have two nonequiv-
alent groups of examinees.

If we assume that multiple hypothetical factors influence the performance
on test items, we are within a multidimensional item response theory (MIRT)
framework (Reckase, Ackerman, and Carlson, 1988). MIRT scale linking
adjust for differences in traslation, dilation, rotation and correlation (Reckase,
2009; Brossman and Lee, 2013). In this work we will focus on scale linking
under the NEAT design.

Although several MIRT models exist (Reckase, 2009), the BF model is one
of the most general, and, for this reason, we choose to work with it.

Current research is an extension of the work by Lee and Lee (2016), who
developed a bi-factor MIRT (BF-MIRT) observed-score equating procedure
for mixed-format tests.

2. BF-MIRT model for a test with several content areas

The three-parameter logistic BF-MIRT model (Cai et al., 2011) is defined
as follows

P (y = 1 | θ0, θs) = c+ (1− c) 1

1 + exp(−[d+ a0θ0 + asθs])
, (1)

where P (y = 1 | θ0, θs) is the probability of item endorsement given the
general dimension θ0 and the specific factor θs, c is the “guessing" probability,
d the item intercept, a0 the item slope on the primary factor, and as the item
slope on specific factor s.

3. Scale linking

MIRT scale linking procedures are the instrument which we use to adjust
for differences in translation, dilation, rotation and correlation (Brossman and
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Lee, 2013). Translation implies that the origin of the θ-space changes. Di-
lation occurs when the units of the coordinate axes of the θ-space change.
Rotation means that one can change the orientation of the coordinate axes
of the θ-space to obtain an orientation for the axes which is easier to inter-
pret. Finally, correlation occurs when the coordinate axes of the θ-space are
nonorthogonal (Reckase, 2009). The initial test form X is used as the base
coordinate system for the testing program: the linking wants to transform the
item parameter estimates from the second test form Y so they are as similar
as possible to those in the base coordinate system. Under the NEAT design,
we can use the common items to calculate the transformation equations. The
transformation equation for the a-parameters is (Reckase, 2009, p.267)

C′Rot′ = (υ′υ)−1υ′a, (2)

where C is the scaling matrix which is used to correct dilation (Reckase,
2009, p.254);Rot is the rotation matrix (Reckase, 2009, p.244); υ is the ma-
trix of common item discrimination estimates in the base coordinate system;
a is the matrix of common item discrimination estimates from the calibra-
tion of form Y . The full set of discrimination parameters from test Y can be
transformed to the base coordinate system by postmultiplying it by the matrix
in Equation (2). To obtain the transformed d-parameters, which we indicate
with d̃, we can use the following transformation (Reckase, 2009, p.268)

d̃ = aΩ + d, (3)

where a is the matrix of discrimination estimates in the base coordinate sys-
tem, d is the matrix of intercept estimates from the calibration of form Y and
Ω is estimated by using common items as follows (Reckase, 2009, p.269)

Ω = (a′a)−1a′(d̃− d), (4)

where a, d and d̃ have been defined previously. Finally, we can calculate the
matrix of coordinates for the examinees in the base coordinate system, which
we indicate with θ, by using the following equation (Reckase, 2009, p.298)
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θ′ = (a′bab)
−1a′baY υ

′(a′bab)
−1a′(dY − db)1, (5)

where ab indicates the item discrimination parameters after transformation to
the base coordinate system, aY indicates the item discrimination parameters
for the same items from the calibration of form Y , db and dY are the cor-
responding intercept terms, v is the matrix of coordinates for the examinees
from the calibration of form Y , and 1 is a vector containing all 1s.

4. Observed-score equating

To conduct observed-score equating, the first step after estimating the prob-
abilities by using the model in Equation (1) is calculating conditional observed-
score distributions ft(x | θ0, θ1, θ2) (where θ1 and θ2 are the two specific
factors) over the first t items by using an extended version of the recursive
formula (Lord and Wingersky, 1984). After we need to aggregate these con-
ditional distributions to obtain a marginal observed-score distribution, as fol-
lows (Lee and Lee, 2016)

f(x) =

∫ ∫ ∫
f(x | θ0, θ1, θ2)g(θ0, θ1, θ2) dθ0dθ1dθ2, (6)

where g(θ0, θ1, θ2) is the trivariate θ distribution. The previous steps are re-
peated on the new form Y to find g(y). Finally, to find the equating relation-
ships, the traditional equipercentile equating is conducted, as follows

eY (x) = G−1[F (x)], (7)

where eY (x) is the equivalent on Form Y of the score x on Form X , F is the
cumulative distribution function ofX andG−1 is the inverse of the cumulative
distribution function G of Y .

5. Simulation study

To implement the simulation study we initially manipulated the data com-
ing from the large scale standardized test administered by the National Eval-
uation Institute for the School System (Invalsi) to fifth grade Italian students.
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This test showed a clearly bidimensional structure due to the presence of two
different sets of items involving ability in reading and grammar (Matteucci
and Mignani, 2015). The Invalsi test is composed by dichotomously scored
items and it is given once a year with new test forms. The 2015 Invalsi fifth
grade Italian test consisted of 33 items about the content area “Reading" and
of 10 items about the content area “Grammar". We used a random sample of
the national data of size 5000. In order to obtain two test forms and an anchor
test, we manipulated the data by following Holland et al. (2008).

The simulation study is conducted by following these steps:

1. By using a BF model we estimate the item parameters on the two test
forms. These parameters are considered to be the true item parameters.

2. By using a standard bivariate normal distribution we generate the ex-
aminees’abilities. The correlation between the latent abilities assume
the values 0.2, 0.5, 0.7 and 0.9 in the different simulation conditions,
while the number of examinees is 600, 2000 and 6000.

3. By using the item parameters estimated at the step 1 and the exami-
nees’abilities generated at the step 2 we simulate two response dataset.

4. For each response dataset obtained at the step 3, we estimate the item
parameters by using, in the unidimensional case, the three-parameter
IRT model (Birnbaum, 1968) and, in the multidimensional case, the
three-parameter logistic BF-MIRT model defined in Equation (1). Af-
ter, we conduct our equating and we also conduct traditional equiper-
centile equating (Kolen and Brennan, 2014) to check the results ob-
tained by using IRT equating (Kolen and Brennan, 2014; Lee and Lee,
2016). After conducting equating, we calculate the following weighted
root mean squared differences (WRMSD1 and WRMSD2) indices to
evaluate our results (Lee and Lee, 2016)

WRMSD1 = {
k∑
i=1

wi(EEQi − TEQi)
2}

1
2 , (8)
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where wi is the frequency of the score i in the the test form Y , K is
the maximum score, EEQi is the equating equivalent estimated by us-
ing either the UIRT or BF-MIRT and TEQi is the equating equivalent
estimated by using the traditional equipercentile equating; and

WRMSD2 = {
k∑
i=1

wi(BFEEQi − UIRTEQi)
2}

1
2 , (9)

whereBFEEQi andUIRTEQi are the equating equivalents estimated
by using the BF-MIRT and the UIRT, respectively, and all the other
quantities have been defined previously.

The quantities defined in Equation (8) and in Equation (9) are averaged over
200 replications. We use the software R (R Core Development Team, 2016)
to conduct the whole simulation study and also the empirical example.

Table 1. WRMSD1 of BF-MIRT and UIRT equating methods and WRMSD2
for the simulation study, n=6000

WRMSD1 BF-MIRT WRMSD1 UIRT WRMSD2

R=0.2 0.197847 0.228975 0.161134
R=0.5 0.202119 0.210682 0.167186
R=0.7 0.211382 0.194221 0.185070
R=0.9 0.200157 0.184088 0.171951

Table 1 shows that the the BF-MIRT method provided WRMSD1 values
lower than those provided by the UIRT method when the correlation between
the specific factors is low (0.2 and 0.5) and the number of examinees is 6000.
WRMSD2 is also low: this means that the results obtained by using the two
methods are not so different. When the number of examinees is 2000 the
two methods showed more or less the same WRMSD1 values through the
different correlation levels; finally, when the number of examinees is 600 the
UIRT method provided WRMSD1 values lower than those provided by the
BF-MIRT method through the different correlation levels.
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6. Real test data study

The 2012 and 2013 administrations of the Invalsi fifth grade Italian test
were used in the real test data study. The 2012 Invalsi fifth grade Italian
test consisted of 32 items about the content area “Reading" and of 11 items
about the content area “Grammar"; the 2013 Invalsi fifth grade italian test
was composed by 42 items of the content area “Reading" and by 10 items
about the content area “Grammar". The sample sizes of the 2012 and 2013
administrations are 2767 and 2346, respectively.

We conduct UIRT observed-score equating, BF-MIRT observed-score
equating and traditional equipercentile equating on the two forms described
above and after we calculate the quantities WRMSD1 and WRMSD2 defined
in Equation (8) and in Equation (9).

Table 2. WRMSD1 of BF-MIRT and UIRT equating methods and WRMSD2
for the Real test data study

WRMSD1 BF-MIRT WRMSD1 UIRT WRMSD2

1.170206 1.193503 0.1983227

The Invalsi 2012 and 2013 administrations are bidimensional, even if the
correlation between the specific factors is about 0.8.

Table 2 shows that the the BF-MIRT method provided WRMSD1 value
lower than the one provided by the UIRT method: this means that the equiva-
lent scores of the BF-MIRT method were closer to those of the equipercentile
method than under the UIRT method. WRMSD2 is also low: this means that
the results obtained by using the two methods are not so different.

7. Discussion with concluding remarks

Both the simulation study and the real test data study show that when there
is bidimensionality and a good number of examinees is available we obtain
more accurate results by using the BF-MIRT observed-score equating than by
using the UIRT observed-score equating.

A future interesting topic would be the sensitivity analysis to detect the
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effect of the test forms length and anchor length. Finally, future research
could extend the proposed model to the case of three or more specific factors.
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On the choice of splitting rules for model-based trees
for ordinal responses
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Abstract: The focus of the contribution is on the splitting criterion for model-based tree

procedure based on the class of CUB mixture models for the analysis of ordinal scores. The

flexibility of the chosen modelling framework allows to select the splitting criterion to grow

the tree according to the purposes of the study and the available data. In particular, the

selection of variables yielding to the best partitioning results can be driven by fitting measures

or classical likelihood and deviance measures. The contribution proposes to investigate the

features of the available decision rules by a set of Montecarlo experiments, thus implicitly

facing the problem of selecting the model-based tree to obtain an adequate and satisfying

overview of response profiles.

Keywords: Rating Data, Model-based trees, Splitting criterion.

1. Introduction

In the last decades tree based methods have proven to be a useful non-
parametric approach for high dimensional data analysis. In a nutshell, the
process of growing trees relies on a recursive binary splitting that allows to
choose at each tree node (i.e. a subset of observations), the best split, i.e. the
optimal binary division into two subgroups of observations according to a cer-
tain rule. All the covariates considered in the procedure, irrespective of their
original scale of measurements, are dichotomized for the identification of the
optimal split that achieves the highest reduction in impurity when dividing the
parent node into its child nodes.
Following the model-based approach to classification trees introduced in
Zeileis et al. (2008), Cappelli et al. (2017) proposed a model-based partition-
ing algorithm focussing on CUB models (D’Elia and Piccolo 2005, Piccolo
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and D’Elia 2008), a class of models that has received an increasing attention
in recent years due to successful applications to the analysis of judgements,
evaluations and perceptions, in various fields of research. Those models aim
to disentangle the individual answer into the personal feeling, usually related
to the subjects’ motivations, and the inherent uncertainty in choosing the ordi-
nal response. The model can be employed without covariates to estimate the
expected distribution given a sample of n observed ordinal values. However
the introduction of covariates greatly improves its usefulness and relevance.
If we consider the model parameters as functions of subjects’ covariates we
get a CUB regression model, i.e., a regression model for an ordinal response
in which the selection of the covariates for uncertainty and/or feeling, that
mostly explain the response and improve the fitting, is a relevant issue.
The procedure for growing trees for ordinal responses in which every node is
associated with a CUB regression model is known as CUBREMOT (CUB RE-
gression MOdel Trees). So far, two splitting criteria have been implemented
for node partitioning with CUBREMOT : the first considers the log-likelihood
increment from the father node to the child nodes for each possible split, and
then chooses the one that maximizes such deviance, the second focuses on
the dissimilarity between child nodes, aiming at generating child nodes as
far apart as possible with respect to the probability distributions estimated by
CUB models. Both splitting criteria generate a model-based tree whose termi-
nal nodes provide different profiles of respondents, which are classified into
nodes according to levels of feeling and/or uncertainty conditional to the split-
ting covariates. In this way the most explanatory covariates are automatically
selected in the partitioning process and the terminal nodes in the tree provide
alternative profiles of respondents based on the covariates values. This contri-
bution investigates the relative performance of the two splitting criteria by a
set of Monte Carlo experiments on a given tree structure, providing support to
the application of CUBREMOT while outlining further splitting rule that could
overcome possible issues.
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2. CUBREMOT

In CUBREMOT, the top-down partitioning algorithm that grows the tree
is based on the estimation, at each tree node, of CUB models (D’Elia and
Piccolo, 2005) where the discrete choice on a rating scale is assumed as the
combination of a feeling and an uncertainty components. A shifted Binomial
distribution describes the feeling component (to account for substantial likes
and agreement) and a discrete Uniform distribution describes uncertainty to
shape heterogeneity. Let Ri denotes the response of the i-th subject to a given
item of a questionnaire collected on a m-point scale, the model is given by:

Pr(Ri = r|πi, ξi) = πi

(
m− 1

r − 1

)
ξm−ri (1−ξi)r−1+(1−πi)

1

m
, r = 1, . . . ,m,

where the parameters πi and ξi are called uncertainty and feeling parameter,
respectively. Covariates can be included in the model in order to relate feel-
ing and/or uncertainty to respondents’ profiles. Customarily, a logit link is
considered:

logit (πi) = yiβ ; logit (ξi) = wiγ , (1)

where yi,wi are the values of selected explanatory variables for the i-th sub-
ject. When no covariate is considered for feeling and uncertainty, the πi = π

and ξi = ξ are constant among subjects. Likelihood methods, and the imple-
mentation of the Expectation-Maximization (EM) algorithm, are the preferred
estimation procedures for CUB models.
According to the binary tree recursive approach, the CUBREMOT procedure
sequentially transformes and uniquely associates with dichotomous factors
each available covariates in order to yield the set of candidate splitting vari-
ables. In particular the procedure can be summarize as follows. LetLnk(π̂k, ξ̂k)
the log-likelihood associated to the final ML estimates (π̂k, ξ̂k) obtained by
a CUB mobel without covariates for nk individual observation a given node
k ≥ 1. Then the statistical significance of the parameter associated to a given
splitting variable s in CUB regression model is tested. If the parameter is sig-
nificant for at least one component, it implies a split into a left (2k) and a
right (2k + 1) child nodes. The nodes will be associated with the conditional
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distributions R|s = 0 with parameter values (π̂2k, ξ̂2k) and R|s = 1 with
parameter values (π̂2k+1, ξ̂2k+1), respectively. This procedure selects a set of
significant candidate splitting variables of node k, Sk = {sk,1, . . . , sk,l}and
the binary variable in Sk associated to the best split can be chosen according
to two alternative goodness of split criteria.

• Log-likelihood splitting criterion. The best split maximizes the de-
viance:

∆Lk =
[
Ln2k

(π̂2k, ξ̂2k) + Ln2k+1
(π̂2k+1, ξ̂2k+1)

]
− Lnk(π̂k, ξ̂k). (2)

This criterion considers the improvement in log-likelihood yielded by
the inclusion of the significant splitting variable and the best split, be-
ing associated with the maximum log-likelihood increment, provides
the child nodes characterized by the most plausible values for CUB pa-
rameters.

• Dissimilarity measure splitting criterion. This criterion selects for the
k-th node the split that maximizes the distance between the estimated
CUB probability distributions p̂(2k) and p̂(2k+1) for the child nodes:

Diss(2k, 2k + 1) =
1

2

m∑
r=1

|p̂(2k)
r − p̂(2k+1)

r |. (3)

The choice of this normalized index entails that the resulting termi-
nal nodes determine well-separated profiles of respondents, in terms of
feeling (agreement, preferences, and so on) and/or uncertainty (indeci-
sion, heterogeneity). This criterion considers a proper version of the
normalized index proposed by Leti(1983) that compares an estimated
probability distribution with the observed relative frequencies and it is
generally considered in the framework of CUB models as a goodness of
fit measure.

In both cases, the node partitioning process stops and a node is declared ter-
minal if none of the available covariates is significant (neither for feeling nor
for uncertainty), or if the sample size is too small to support a CUB model fit.
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3. Monte Carlo Design

The contribution of this paper is to verify by a set of Monte Carlo ex-
periments the performance of the proposed criteria with respect to a given
rating response and some respondent characteristics. To this aim we simu-
late nsimul = 100 replicates of a sample of n = 2000 individuals ratings
with m = 7, 1400 of them associated to male (G = 1). We also assume that
patterns for the males’ responses with Age < 35 (Ai = 0) is different from
males’ answers with Age ≥ 35 (Ai = 1). Then the data are generated to
have the tree structure displayed in Figure 1:

1

G = 0 G = 1

2 3

A < 35 A ≥ 35

76

Figure 1. CUBREMOT : Tree of simulated data

Then, we consider a dummy variable G and a continuous variable for Age
split at 35 (A), respectively, which are maintained constant while sampling
only the rating response: for each simulation plan,Age is generated both from
a Gaussian distribution N (µ = 37, σ2 = 4) and from a Uniform distribution
over the interval (30, 40); parameter values for terminal nodes are reported in
Table 1.

Specifically, different scenarios have been designed:

1. Plan 1 corresponds to the case in which overall the uncertainty level is
low and the distribution at the terminal nodes are very different;
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Table 1. Parameter values at terminal nodes for the simulation plans

Node 2 Node 6 Node 7
π2 ξ2 π6 ξ6 π7 ξ7

Plan 1 0.7 0.8 0.9 0.6 0.5 0.4
Plan 2 0.7 0.2 0.5 0.4 0.2 0.3
Plan 3 0.4 0.6 0.3 0.6 0.1 0.6
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Figure 2. Nodes distribution for simulation plan 1

2. Plan 2 corresponds to the case in which the dummy split A at age 35 is
significant for both feeling and uncertainty, but being more important
for the latter component and feeling being almost homogeneous at the
terminal nodes.

3. Plan 3 corresponds, instead, to data generated with a constant feeling
and splits are to be called significant only with respect to the uncertainty
components, with heterogeneity in the data being high or fairly high.

Figure 2-4 displays instances of simulated and estimated distributions at
the tree nodes for the different plans.
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Figure 3. Nodes distribution for simulation plan 2
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Figure 4. Nodes distribution for simulation plan 3

4. Results and Comments

The performances of each splitting criterion for the given tree structure
are measured via mis-classification errors (that is, the proportion of cases in
which, for the given node, a different split has been selected for partitioning),
which are reported in Table 1. For node 3, the proportion of cases in which
the procedure splits according to A or not is adjusted by including also the
proportion of cases in which the selection is the split at Age 34 or Age 36 to
control for uncertainty of classification (squared brackets).

Table 2. Miss-classification errors for splits at nodes 1 and 3 for different
criteria

Plan 1 Plan 2 Plan 3
Age ∆Lk Dissim ∆Lk Dissim ∆Lk Dissim

∼ N (37, 4) Node 1 0 0 0 0 0.07 0.11
Node 3 0 0 0.081

[0.031]
0.041
[0.031]

0.329
[0.151]

0.287
[0.178]

∼ U(30, 40) Node 1 0 0 0 0 0.368 0.347
Node 3 0 0 0.18

[0.05]
0.28
[0.01]

0.643
[0.443]

0.647
[0.456]

From Table 1 we can claim that, if the parent distributions at the termi-
nal nodes are very different, both splitting rules ensure very satisfactory per-
formances. In general, the chosen partitioning rules behave in a comparable
way. With reference to the simulation Plan 3, it is worth to report that the mis-
classification error for Node 3 drops to 0.328 and 0.309 for the log-likelihood
and the dissimilarity splitting criterion, resp., when enlarging the neighboring
ages to the interval (33, 37).
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5. Further developments

The next step in the sensitivity analysis for the splitting criteria currently
available for CUBREMOT is to assess the stability of the procedure with re-
spect to the conditional distribution given the covariates as a sort of fluctuation
tests: then, at each simulation run, also covariates should be generated from
the parent distribution in order to have some natural noise. This issue is par-
ticularly important when checking the stability of a classification with respect
to a continuous covariate; in that case, indeed, the model-based partitioning
rule prescribes that a dummy split is tested for every possible covariate value.
More interestingly, we have seen from our Monte Carlo experiment that, as
the overall uncertainty increases, the mis-classification error for the split of
continuous covariates also increases. This leads us to envisage a splitting cri-
terion to grow a tree in which each partitioning corresponds to the split that
most reduces the uncertainty in the data. This work is the subject of ongoing
research.

Acknowledgements: The contribution is framed within the CUBREMOT project of University

of Naples Federico II for findings and results.

References

Cappelli C., Simone R., Di Iorio F. (2017) Growing happiness: a model-based tree, in:
Petrucci A., Verde R. (eds), Statistics and Data Science: new challenges, new gener-
ations Proceedings of the Conference of the Italian Statistical Society 2017, Firenze
University Press, Firenze, 261-266.

D’Elia A., Piccolo D. (2005) A mixture model for preference data analysis, Computational
Statistics & Data Analysis, 49, 917-934.

Leti G. (1983) Statistica descrittiva, Il Mulino, Bologna.
Piccolo D., D’Elia A. (2008) A new approach for modelling consumers’ preferences, Food

Quality & Preference, 19, 47-259.
Zeileis A., Hothorn T., Hornik K. (2008) Model-Based Recursive Partitioning, Journal of

Computational and Graphical Statistics, 17, 492-514.

202



Robustness issues for categorical data

Francesca Torti∗ , Silvia Salini∗∗ , Marco Riani∗∗∗

Abstract: Correspondence Analysis (CA) is a popular method to analyse relationships be-

tween categorical variables. Classically, the procedure involves the decomposition of Pearson

residuals using singular value decomposition, thereby allowing the user to view the corre-

spondence between categories in low-dimensional space. The aim in Correspondence Ana-

lysis is to find k dimensional coordinate matrices X and Y, for row and column points. The

graphical representation depends on the parameter αC that determines the type of coordinates

in X and Y . This contribution considers the robustness of the correspondence map when the

parameter αC varies across a set of values. In this initial exploration, we address the problem

empirically with an example from prices in international trade. In order to apply the Corre-

spondence Analysis, the prices, which are naturally continuous, are robustly clustered in a

discrete number of homogeneous groups.

Keywords: Biplot, Confidence ellipse, Adjusted residuals.

1. Introduction

Correspondence Analysis is a statistical technique that provides a graph-
ical representation of the contingency tables. The literature is vast, but ma-
jor references can be found in Lebart et al. (1984) or Greenacre (1984 and
2017). The typical plot in Correspondence Analysis visualizes the data in a
two dimensional space using the first two extracted coordinates X and Y from
both rows and columns. The objective is to get an idea of the association
between two variables and understand which categories of rows and columns
determine the structure of the dependence. To do this we consider the ellip-
tically confidence regions proposed by Beh (2010). Confidence ellipses, and
therefore the significant, or not, associations between categories of rows and
columns, depend on the type of coordinates of X and Y.
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There are different representations of the correspondence map that depend
on the parameter αC , as shown by Lorenzo-Seva et al. (2009). Flexible and
informative representations that can be controlled over a set of values for the
parameter alpha have been recently introduced in the Flexible Statistics for
Data Analysis Toolbox for MATLAB (FSDA, Riani et al. 2012). The toolbox
is available at the address http://rosa.unipr.it/fsdadownload.html

of the University of Parma, also via the European Commission’s website
http://fsda.jrc.ec.europa.eu.
The main function, CorAnaplot, produces elliptical confidence regions and
the correspondence map for any level of αC ; therefore in this function the pa-
rameter alpha can be set with values that are not limited to the set {0, 0.5, 1},
typical of this context.
This extension allows to understand if an optimal level of αC exists, which
allows to obtain the map minimizing the distance between the row and col-
umn points, enriched by confidence ellipses highlighting robust row-column
associations.
We present the problem of the choice of the αC level through a real data ex-
ample in the field of international trade. The trade prices, which constitute
a continuous variable, before being analysed with the Correspondence Ana-
lysis, are clustered in homogeneous groups with a robust clustering method.
This preliminary exploration will be complemented, in future work, by an
automatic procedure to select the optimal level of αC and the corresponding
robust map and an intensive simulation study for assessing the procedure.
Again in the direction of robustness, we also envisage to decompose the ad-
justed residuals instead of Pearson residuals.
More precisely, we will follow Fuchs and Kenett (1980), who have proposed
the M-test based on adjusted residuals to detect outlying cells in the two-way
contingency tables, and Beh (2012) who studied the impact of the application
of the adjusted residues in the analysis of correspondence.
The introduction of the Correspondence Analysis is left out from this short
and preliminary discussion: we refer, for example, to Lorenzo-Seva et al.
(2009) for the theory on the topic. Similarly, for the mathematics of the ellip-
tical confidence regions we refer to Beh (2010). Instead, in Section 2 we will
illustrate and discuss the use of the tools with reference to a real application
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in the filed of trade prices in the European Union.

2. Application

The regulatory framework of the European Union (EU) reserves to the
EU institutions the responsibility of trade relations between the EU Member
States (MSs) and the non-EU countries. The target is the development of
statistical methods for the analysis of international trade data for the detection
of Customs frauds (e.g. under-valuation of import duties), the defence against
anti-competitive conducts and for facilitating price convergence among EU
MSs.

The data considered are trade values and quantities aggregated monthly
according to the product, the country of origin and the country of destination.
The monthly aggregates are downloaded from the COMEXT database of the
European Statistical Office, Eurostat. In COMEXT the product codes are
classified at the detailed 8-digits level of the Combined Nomenclature (CN8);
therefore, data for the same product code are reasonably comparable. The
quantities are given in tons, or supplementary units if foreseen, and the values,
in thousands of Euros.

The Joint Research Centre of the European Commission provides estima-
tion of fair (import) prices from COMEXT data. They can be used for the
determination of the customs value at the moment of the customs formalities
(to establish how much duty the importer must pay) and the auditing activities
in post-clearance checks of individual import or export transactions.

In this work we start from a set of these fair prices, concerning imports of
a given product from one Third Country into EU during the year 2016. The
set is formed by 28 (number of MSs) ·12 (number of months) = 336 monthly
fair prices. We cluster them in k homogeneous groups and then verify with
the Correspondence Analysis if there are significant associations among MSs
and the assignment to low-price or high-price clusters.
For doing this we have used the Flexible Statistics for Data Analysis (FSDA)
MATLAB toolbox, introduced by Riani at al. (2012).

For clustering the fair prices, we have used the robust method TCLUST,
introduced by Garcia-Escudero et al. (2008). TCLUST, as most of clustering
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%%% Run tclustIC on all MS prices to estimate k %%%
outIC=tclustIC(price_2016,’plots’,0,’whichIC’,’MIXMIX’);
%%% Run tclustIC on one MS prices to estimate c %%%
outIC=tclustIC(price_2016March,’plots’,0,’whichIC’,’MIXMIX’);
%%%%%%%% plot the monitoring of the likelihood %%%%%%%%
tclustICplot(outIC);

Figure 1. Monitoring of the log-likelihood obtained by applying TCLUST
on all monthly fair prices (left panel) and on March fair prices only (right
panel), for different number of groups (x-axis) and restriction factors c (dif-
ferent curves). The box at the bottom of the figure contains the code used to
generate the plots.

methods, determines a priori a number of parameters: the optimal number of
groups, the restriction factor c, the trimming percentage αt.

For the choice of the optimal number of groups, we have used the recent
results of Cerioli et al. (2017). In particular we have applied the tclustIC

function of FSDA in a univariate context to all monthly fair prices, i.e. esti-
mated prices for all the 28 MSs.
Differently from what we will do for estimating the restriction factor and the
percentage of trimming, we estimate the number of groups using prices of all
MSs. In fact, for a reasonable application of the Correspondence Analysis,
the number of groups have to be the same in all months.
The main output of the method of Cerioli et al. (2017) is reported in the left
panel of Figure 1.
Each curve refers to a different restriction factor c, i.e. the parameter of
TCLUST which allows to identify groups with a shape more (large values
of c) or less (values of c closed to 1) elliptical. Each curve represents the
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%%%%%%%%%% monitoring alpha %%%%%%%%%%%

c = 1; k = 3; alpha_vec = 0.01:0.02:0.09;

outeda = tclusteda(price_2016March,k,alpha_vec,c,’plots’,1);

%%%%%%%%%% identify groups with TCLUST %%%%%%%%%%

k = 3; alpha = 0.05; c = 1;

out = tclust(price_2016March,k,alpha,c);

Figure 2. For March estimated prices, on the left panel monitoring the vari-
ation in the Adjusted Rand Index, centroids and covariance matrix for in-
creasing values of the trimming percentage αt (x-axis); the second and third
measures indicate αt = 0.05 as the best percentage of trimming. On the right
panel, TCLUST classification of March prices (the two red points labelled
with “0” are trimmed units). The box at the bottom of the figure contains the
code used to generate the plots.

log-likelihood obtained for different number of groups k (on the x-axis). The
log-likelihood decreases when the number of groups and restriction factor ap-
proach the optimal ones. Of course, more are the number of groups, lower is
the log-likelihood. Figure 1 shows that for intermediate values of c (8, 16, 32)
a good choice of k could be 3: the log likelihood improves compared to
the log-likelihood for k = 2, while does not change compared to the log-
likelihood for k = 4.
Set the number of groups to k = 3, we identify the optimal restriction factor c
following Cerioli et al. (2017), as just described, but month by month. To give
an example, in the right panel of Figure 1, we have reported the monitoring
of the log-likelihood only for the month of March. The best restriction factor
is 1, which corresponds to spherical clusters. Set the number of groups and
the restriction factor, we choose the percentage of trimming αt by monitoring
with the function tclusteda, month by month, the variation in the Adjusted
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Rand Index (ARI), centroids and covariance matrix for increasing values of
αt.
To give an example, in the left panel of Figure 2 we have reported the moni-
toring of the three measures for the month of March. Both the monitoring of
the centroids and of the covariance matrices indicate that a good percentage
of trimming could be αt = 0.05.
Having identified the three parameters, we run TCLUST with the function
tclust month by month; each estimated price (with the exception of the
trimmed ones)is therefore assign to a cluster.
To give an example, in the right panel of Figure 2, we have reported the
TCLUST assignments for March prices.
In the resulting TCLUST classification “1” is the group characterized by the
highest prices, “2” with the medium prices, “3” with the lowest prices. On the
described classification, we apply the Correspondence Analysis (Figure 3) to
study the significant association between the TCLUST classification (blue cir-
cles labelled as 1, 2 and 3) with the MS of destination (red triangles). In par-
ticular we have reported the results for two levels of the parameter αC which
determines the type of coordinates: 0.4 (left panel) and 0.9 (right panel). The
two plots show different significant associations, which are represented by
MSs falling inside the confidence ellipses of the three TCLUST groups of
prices. With αC = 0.9 there is a strong association of the group number 1

(of the high prices) with France; with αC = 0.4 there is a strong association
of the group number 1 with Germany, Sweden and Croatia, and of the group
number 3 (of the lowest prices) with Romania, Portugal and Great Britain. It
is evident the need of an automatic procedure to select the optimal level of
αC .

208



Torti et al., Robustness issues for categorical data

-2 -1.5 -1 -0.5 0 0.5 1
Dimension  2 ( 44.9%)

-1

-0.5

0

0.5

1

1.5

D
im

en
si

o
n

  1
 (

 5
5.

1%
)

C = 0.4, all months

x1

x2
x3

AT

BE

CY

CZ

DE

DKEE ES

FI

FR

GB GR

HR

HU

IE

IT

MT

NL

PL

PT

RO

SE

SI

SK

-2 -1 0 1 2
Dimension  2 ( 44.9%)

-1.5

-1

-0.5

0

0.5

1

1.5

2

D
im

en
si

o
n

  1
 (

 5
5.

1%
)

C = 0.9, all months

x1

x2
x3

AT

BE

CY

CZ

DE

DKEE ES

FI

FR

GB GR

HR

HU

IE

IT

MT

NL

PL

PT

RO

SE

SI

SK

%%%%%%%%%%%%%%%%%%% INPUT PARAMETERS %%%%%%%%%%%%%%%%%%%%

plots = struct; plots.alpha=’bothprincipal’; %symmetrical

%plot or French symemtrical model.

labels_rows = {’1’ ’2’ ’3’ };

labels_columns= {’AT’ ’BE’ ’CY’ ’CZ’ ’DE’ ’DK’ ’EE’ ’ES’

’FI’ ’FR’ ’GB’ ’GR’ ’HR’ ’HU’ ’IE’ ’IT’ ’MT’ ’NL’ ’PL’

’PT’ ’RO’ ’SE’ ’SI’ ’SK’};

%%% Cross tabulation of vector of MS and of assignements.%%

N=crosstab(groups,MS);

%%%%%%%% Correspondence Analysis execution %%%%%%%

out=CorAna(N,’Lr’,labels_rows,’Lc’,labels_columns,

’plots’, plots,’d1’,2,’d2’,1);

%%%%%%%%%%%%%%%%%%% INPUT PARAMETERS %%%%%%%%%%%%%%%%%%%%

confellipse = struct;

confellipse.conflev = 0.95;

confellipse.method = {’multinomial’};

confellipse.AxesEllipse = false;

confellipse.selRows=[1 2 3]; confellipse.selCols=[];

plots = struct; plots.alpha=0.4; %or 0.9

%%%%%%%%%% Correspondence Analysis plot %%%%%%%%%

CorAnaplot(out,’plots’,plots,’confellipse’,confellipse,

’d1’,2,’d2’,1);

Figure 3. Main output produced by the Correspondence Analysis. The plot on
the left is obtained with αC = 0, 4, the plot on the right with αC = 0, 9. The
box at the bottom of the figure contains the code used to generate the plots.
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Applications and theoretical results of association rules and
compositional data analysis: a contingency table perspective

Marina Vives-Mestres∗ , Josep Antoni Martín-Fernández∗∗ ,
Santiago Thió-Henestrosa∗∗∗ , Ron S. Kenett∗∗∗∗

Abstract: Association rule mining was originally developed for basket analysis. To generate

an association rule, the collection of more frequent itemsets must be detected. The association

rules are then ranked using measures of interestingness. Using the associaton rule expression

as a contingency table a representation on the unit simplex is appropiate. Compositional

data analysis provides nice properties such as subcompostional coherence and scalability. We

explore here the implication of compositional data analysis to association rule mining in large

databases and big data and propose compositional measures of interestingness. Visualization

of compositional measures on a simplicial representation of the itemsets gives new insights

in association rule mining. The case study used here to demonstrate our approach is derived

from a medical data set of side effects from Nicardipine.

Keywords: Aitchison geometry, Isometric logratio coordinates, Measures of interestingness.

1. Introduction

Commonly a large database with unstructured semantic data (Agrawal et
al., 1993) is formed by a set of n binary variables or attributes I = {i1, i2, . . . ,
in} called items; and a set of m rows R = {r1, r2, . . . , rm} known as trans-
actions. Let Sa, Sc ⊆ I be two sets of items (itemsets) with Sa ∩ Sc= ∅, that
is with empty intersection of items. An implication of the form {Sa ⇒ Sc}
is called a rule, where Sa and Sc are respectively the antecedent and conse-
quent itemsets. These rules that are “important” express that the itemsets are
associated, having an association rule (AR).
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Let {Sa ⇒ Sc} be the AR of interest. Let n1 be the absolute frequency of
occurrence of both Sa and Sc; n2 the frequency of only Sa; n3 the frequency
of only Sc; and n4 the number of transactions where neither Sa or Sc occur. In
other words, let xk be the relative frequency (support) which satisfy the condi-
tions in nk, (xk = nk/m, k = 1, . . . , 4), and the total number of transactions is∑

nk=m. Consequently,
∑

xk=1 and x= (x1, x2, x3, x4) can be considered as a
composition. Compositions are vectors whose elements, called parts, provide
relative information about a whole (Aitchison, 1986). Table 1 shows that xk
respectively estimates P(Sa ∩ Sc), P(Sa ∩ cSc), P(cSa ∩ Sb), P(cSa ∩ cSc).

Table 1. AR contingency table for the AR {Sa⇒ Sc}

Sc cSc
Sa x1 x2

cSa x3 x4

When compositions are represented by vectors of constant sum, its sample
space, the simplex, is SD = {x ∈ RD

+ :
∑D

j=1 xj = k}, where D is the
number of parts and the value of k is irrelevant, and a popular choice is k=1.

Nowadays there is a general agreement (Pawlowsky-Glahn and Buccianti,
2011) that the geometry of the simplex is based on log-ratio coordinates. This
particular geometry has three basic elements: the operations perturbation,
powering, and inner product, that provide an Euclidean structure to the sim-
plex. This allows applying all the multivariate methods to analyse CoDa sets.
An important step to use these statistical techniques is to build orthonormal
bases in the simplex and to express any composition x in its corresponding
coordinates, obtained using the isometric log-ratio function ilr(x). A Sequen-
tial Binary Partition (SBP) (Pawlowsky-Glahn and Buccianti, 2011, Chapter
2) is an easy and interpretable way to define a function ilr. A SBP of the parts
of a composition consists of D−1 steps, where an orthonormal coordinate is
built in each step of the partition. In a first step, a SBP consists of splitting
parts of the composition x into two groups, which are indicated by +1 and
−1. In consecutive steps, each previously created group of parts is split again
into two groups. The partition ends when the groups are made up of a unique
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part. In the jth step of a SBP, denoting by x+ the group of r parts marked
with a +1 and by x− the group of s parts marked with a−1, the corresponding
coordinate, ilrj(x), is

ilrj(x) =

√
r.s

r + s
ln(

gm(x+)

gm(x−)
)

where gm(·) is the geometrical mean of involved parts of x. Let T be the table
of an AR (Table 1) identified by the composition x. Using a SBP, this table T
can be expressed in terms of ilr-coordinates of x

ilr(x) = (
1

2
ln(

x1x4

x2x3

),

√
2

2
ln(

x1

x4

),

√
2

2
ln(

x2

x3

)). (1)

Despite the basis selected for the ilr-coordinates is not unique, this basis is
useful for interpretation purposes and to define CoDa-AR measures of inter-
estingness.

2. CoDa-AR measures of interestingness

Measures of interestingness are appropriate indices for measuring the strength
of an AR. We present below four measures known as support, confidence, lift
and RLD:

• support(AR)= x1= n1/m, informs of the proportion of transactions that
verify the AR.

• confidence(AR) = n1/N{Sa}, where N{Sa} is the number of transac-
tions containing the antecedent. Because confidence {Sa ⇒ Sc } =
support{Sa ⇒ Sc}/support{Sa}, it can be interpreted as a conditional
probability.

• lift(AR) = confidence{Sa ⇒ Sc}/support{Sc}. Following Kenett and
Salini (2011), since lift{Sa ⇒ Sc} = support{Sa ⇒ Sc}/(support{Sa}
support{Sc}), this measure is a deviation under independence of the
itemsets. For lift = 1 there is no association between the itemsets. When
lift are respectively smaller and greater than 1, the knowledge that Sa
holds causes a negative and positive effect on the probability of Sc.
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• RLD(AR): this measure of interestingness, called relative linkage dis-
equilibrium, introduced for AR in Kenett and Salini (2008), assesses
the relative distance of the AR from its projection on a surface with
lift= 1. It captures the level of dependence of the AR, normalised by
geometrical constraints on a simplex representation.

The compositional nature of an AR (Table 1) and the geometrical interpreta-
tion of measure RLD suggest to adapt its definiton to the Aitchison geometry
(Pawlowsky-Glahn and Buccianti, 2011). According this approach Kenett et
al. (2018) define the compositional measure of interestingness (C) as

C(AR) = ilr1(x) (2)

The relation between C (first ilr-coordinate) and the classical odds ratio (OR)
measure (Tan et al., 2004) is evident: OR(AR) = odds(Sc/Sa)/odds(Sc/cSa) =
(x1x4)/(x2x3). It therefore consists of a measure of dependence. In addition,
the second ilr-coordinate (Eq. 1) is about the relationship between the esti-
mates of the probabilities P(Sa ∩ Sc) and P(cSa ∩ cSc). Whereas the third
coordinate represents the relationship between P(Sa ∩ cSc) and P(cSa ∩ Sb).
The value OR(AR) = 1 indicates independence, OR(AR) > 1 a positive effect
and OR(AR) < 1, a negative effect. Note that C(AR)=1/2·ln(OR(AR)) and
OR(AR)=e2·C(AR). This monotonic functional relation indicates that both val-
ues have the same ranking. Moreover, when a measure is unbounded, some
practical normalization to interval [−1, +1] is advisable. For example, Yule’s
Q (Tan et al., 2004) defined as OR∗(AR)=x1x4−x2x3

x1x4+x2x3
is the normalized ver-

sion of the OR. Note that the normalized version of C(AR) holds C∗(AR)=
tanh(C(AR))= OR∗(AR).

On the other hand, The measure RLD for a table T (Table 1) measures
the similarity between the value x1 and the product (x1+x2)(x1+x3) via the
subtraction D(AR)= x1 − (x1 + x2)(x1 + x3) = x1x4 − x2x3 which mea-
sures disequilibrium (D). With no disequilibrium, or independence, we have
D(AR)=x1x4 − x2x3 = 0. The comparison D(AR)= 0 can be formulated as

x1x4

x2x3

= 1⇔ ln(
x1x4

x2x3

) = 0⇔ C(AR) = 0.
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Therefore, using the relationship between C(AR) and D(AR), one can show
that

• C(AR) < 0 : negative repelling effect between itemsets (Sa true, Sc less
likely true)

• C(AR) = 0 : independence

• C(AR) > 0 : positive attractive effect (Sa true, Sc more likely true)

To determine if an AR is statistically different from random noise Kenett
et al. (2018) introduce a parametric test based on the significance of an odds-
ratio (Haldane, 1995). A 95% confidence interval for an odds-ratio is

(e
ln(OR)−1.96

√
1
n1

+ 1
n2

+ 1
n3

+ 1
n4 , e

ln(OR)+1.96
√

1
n1

+ 1
n2

+ 1
n3

+ 1
n4 ).

Using this formula one can define the corresponding test (=0.05) for C(AR).
With this approach, ARs where∣∣∣∣∣∣ 2 · C(AR)√

1
n1

+ 1
n2

+ 1
n3

+ 1
n4

∣∣∣∣∣∣ > 1.96, (3)

are considered statistical significant and relevant for the study.

3. CoDa-AR measure applied to Nicardipine database

We focus on side effects of Nicardipine, a medication used to treat high
blood pressure and angina that belongs to the dihydropyridine class of cal-
cium channel blockers. The data is based on patient reports in blogs obtained
through a website such as https://treato.com/Nicardipine/?a=s. The specific
data analyzed consists of 6074 side effects reported by 882 different patients.
Our objective is to identify interesting patterns in AR of side effects that state
what goes with what. We performed on this data an AR analysis and selected
ARs with a minimum support and confidence of 0.1 and 0.4 respectively. This
process gives us a total of 62 ARs, each AR with its corresponding contin-
gency table. Among these 62 ARs we selected only the associations that are
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statistically significant. According to Haldane’s test in Eq. 3 only 30 ARs are
significant. Using the CoDaPack package (Comas-Cufí and Thió-Henestrosa
2011) we calculated the ilr-coordinates of all the ARs with the basis defined in
Eq. 1. Table 2 shows the mean and standard deviation (in parenthesis) of the
measures: support, confidence, lift, C and C*. Both statistics are calculated
respectively for all the 62 selected ARs and the 30 ARs that are significant by
the Haldane test. For the measures support and confidence, the mean values
decrease. On the other, the mean values for lift, C and C*, increase. A t-test
for comparing the mean of the significant and non-significant ARs is applied
to confirm that these variations are significant. If the significance level is the
usual 0.05, the p-values in Table 2 suggest that only the variations in lift, C
and C* are significant. In other words, both CoDa-AR criteria have no effect
on the measures of support and confidence.

Table 2. Mean and standard deviation (in parenthesis) of support, confidence,
lift, C and C∗ respectively for all the 62 selected ARs, for the 30 ARs found
significant by the Haldane test. The p-value corresponds to a t-test compar-
ing the means of the 62 ARs and the ARs defined by Haldance significance
criteria.

support confidence lift C C∗

All 0.135 0.554 1.458 0.446 0.401
n= 62 (0.036) (0.124) (0.323) (0.232) (0.184)

Haldane 0.134 0.517 1.616 0.587 0.511
n= 30 (0.043) (0.125) (0.386) (0.197) (0.140)

p-value 0.672 0.138 5.27e-07 1.51e-08 8.28e-09

The measure C(AR) in Eq. (2), that is, the first ilr-coordinate, has a mean
of 0.587 and a standard deviation of 0.197, for the Haldane group. When
the normalized measure C*(AR) is calculated, these values of mean and stan-
dard deviation transform respectively to 0.511 and 0.140, suggesting that, on
average, the rules have a medium level of association. Importantly, all ARs
have a C(AR) greater than 0, that is, in every AR, a positive effect exists be-
cause the product x1 · x4 is greater than x2 · x3. Importantly, once the ARs
statistically significant and relevant for the study have been detected one can
analyze them using all the multivariate techniques for compositional data. For
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example, one can plot the ARs using a CoDa-biplot (Pawlowsky-Glahn and
Buccinati, 2011) where the relations among the ARs and between each AR
and the estimates of probabilities (Table 1) can be interpreted.

Acknowledgements: This work has been partially financed by the project “CODA-RETOS”

(MCI; Ref: MTM2015-65016-C2-1-R).
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