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Abstract: The talk aims to analyse the definition of information by comparing the crucial definitions
formulated by Shannon and von Neumann and highlighting some of their criticalities. Statistical
mathematics poses the basis for understanding information in the form of Shannon’s proposal in A
Mathematical Theory of Communication. In this work, information is explained by the concept of
information entropy. However, it creates confusion in understanding what information is, first because
of its comparison to the thermodynamic counterpart and second because Shannon’s definition is very
precise, as it analyses entropy as the quantity of uncertainty in a transferred message. Instead, the
advent of quantum mechanics also posed a turning point in the definition of information and, more
precisely, in the exchange of information. Von Neumann proposed a new definition that, at first
glance, seems pretty close to the definition of Shannon; in fact, the shape of both formulas is very
similar, and the von Neumann entropy seems to be the same equation of the information entropy
but for the microscopic world. However, the von Neumann definition captures something different:
the entanglement property. The two equations coincide in some situations, but the same applies to
Shannon entropy and thermodynamics. We will investigate if the definitions are specular. The seminar
will be structured as follows: in the first part we will analyse Shannon’s definition; in the second part
we will discuss von Neumann’s definition; in the last section we will compare them using recent
works on this topic.
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1. Entropy

The Boltzmann Demon is the easiest way to think and understand the concept of entropy. It reflects
the number of possible microscopic arrangements (or states) the demon can create with the particles in
a system while still achieving the same macroscopic state. All attempts to define information use the
concept of entropy, so a brief analysis was necessary before looking at the various proposals for defining
information. For this reason, the paper has the following structure: the first paragraph is an overview of the
concept of entropy, and paragraphs §2 and §3 analyze the proposals given by Nyquist (1924) and Shannon
(1948) to define information, instead the paragraph §4 shows the von Neumann concept of information
entropy in quantum mechanics. At the end of paragraph §5, the paper aims to show the conclusion that
the attempts to define information cover different aspects and we lack a unified definition of information.

Entropy appeared in the middle of the 19th century in the context of thermodynamics, proposed by
Rudolf Clausius (Hanlon, 2020). At first, it was considered a measure of disorder and the grade of
irreversibility of a physical process. The language of thermodynamics measures the quantity of energy
in a system that is not available to make a work in this way:

𝑑𝑆 =
𝛿𝑄

𝑇
(1.1)
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𝑑𝑆

𝑑𝑡
≥ 0 (1.2)

The first equation is the Clausius definition of entropy. It describes the amount of heat 𝛿𝑄 transferred
from a system at a given temperature T. The equation states that entropy changes proportionately to the
amount of heat added to the system and inversely to the temperature. Instead, equation (1.2) expresses
that entropy always tends to increase, which means that entropy can never decrease over time.

In 1877, Ludwig Boltzmann developed the statistical explanation of Clausius’s second law of thermo-
dynamics. He formalized the concept of entropy S, defined as the ratio of heat flow to temperature. The
law states that the entropy for a closed system (with constant energy, volume, and number of particles)
can never decrease (Boltzmann, 1877).

𝑆 = 𝑘𝐵𝑙𝑛Ω (1.3)

KB is a physical constant that relates temperature to energy at the particle level. The number of distinct
microscopic configurations, or “microstates”, that a system can be in, given its macroscopic constraints,
is represented byΩ. AsΩ increases, there are a greater number of possible ways of arranging the particles
while preserving the system’s overall macroscopic characteristics.

However, “the theory of thermodynamics, taken by itself, does not connect entropy with information.
This only comes when the results are interpreted in terms of a microscopic theory, in which case
temperature can be interpreted as being related to uncertainty and incoherence in the position of particles”
(Bais & Farmer, 2008, p. 7).

It is crucial to acknowledge that although entropy was initially conceptualized within the domain of
thermodynamics as a measure of disorder, its mathematical formulation established the foundation for
subsequent advancements in information theory. The interconnection between entropy and information
became evident only when researchers began to interpret entropy in terms of uncertainty and probabilistic
processes.

2. Nyquist: a first attempt

One of the ‘prototype’ attempts to define information can be found in the work of Harry Nyquist, Certain
Factors Affecting Telegraph Speed, published in 1924. The scope of this paper is to work on some troubles
that affect telecommunication systems. Here, Nyquist defines information as the token that carries itself
(Binary or Signal Elements).

Aside from the technical results, one of the most exciting concepts of the paper is the ‘speed of
transmission of intelligence.’ It can be defined as “the number of characters representing different letters
and figures that can be transmitted in a given length of time, assuming that the circuit transmits a given
number of signal elements per unit of time” (Nyquist, 1924, p. 333) Nyquist also proposes a mathematical
formulation of the speed of transmission of intelligence:

𝑊 = 𝐾 log𝑚 (2.1)

K is a constant, and m is the number of current values employed. Suppose we assume that we are
working with a code whose characters are all the same duration (this is already an indirect assumption
of the ontology of information). In that case, we can consider n as the number of signal elements per
character, and then the total number of them that can be constructed is 𝑚𝑛 or 𝑛 log𝑚. The speed of
transmission of intelligence is directly proportional to the line speed; we can call it s and inversely
proportional to the number of signal elements per character n and obtain the equation W proposed by
Nyquist.
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His formulation is one of the earliest attempts to link entropy, as proposed by Boltzmann (1.3), with
information. He tries to connect statistics with the world of information, but only when every case has the
same transmission probability. A big problem in his approach is that information (’Intelligence,’ using
his words) is sometimes imperfect in the real world. So, Nyquist’s formula captures the transmission of
intelligence (information) at maximum in the perfect case. Still, it remains very unclear what happens
when a message passes through noises or turbulence.

3. Shannon’s definition of Information

It was Claude Elwood Shannon to study and give a more solid shape to information theory at the Bell
Labs. He took a big step in the definition of information, and his revolutionary paper can be considered
the year zero for the theory of information. He formulated a definition of information in a 1948 paper
called A Mathematical Theory of Communication. The author states: “the fundamental problem of
communication is that of reproducing at one point either exactly or approximately a message selected at
another point” (Shannon, 1948, p. 379). In this paper, the author proposes his theory of information, in
which he extends Nyquist’s theory. For Shannon, how information is transmitted through messages is not
linear: information is, from his point of view, a search in a set of possible good messages. In his view,
the core structure of a communication system has a specific structure with some crucial elements:

• The informational source that produces messages for the receiver.
• The transmitter: this is something that modifies the message in the right way for transmission.
• The channel: it is the object that transmits the message.
• The receiver: it has the role of encoding the message received from the transmitter.
• The destination: it is the recipient of the message.

With this taxonomy of the different elements that make up a system, we can build different models of
communication systems, not only the most common ones created by computer devices or telephones,
but it is also possible to model communication systems formed by people, objects, and very different
kinds of actors. Also, in Shannon’s approach, like in the Nyquist theory, the measure of information is
represented mathematically by a logarithmic function but with different elements. This approach is very
convenient for engineering since standard variables, which are helpful in that field, scale linearly with
the logarithmic number of possibilities; the logarithmic approach is also very similar to our view of
measurement, where we tend to weigh things by comparison. However, information looks pretty different
from a measure like length, so what type of information can we describe with this theory?

To describe information in this way we use a mathematical model that describes sequences of symbols
with a set of probabilities, and that is the stochastic process (Hoffman, 2013), which in statistical
mathematics is a family of random variables. The randomness that we can find in statistical mathematics
is called Shannon’s entropy:

𝐻 = −𝑘
𝑛∑︁
𝑖=1

𝑝𝑖 log 𝑝𝑖 (3.1)

If we analyze the formula, we find that:

• The minus sign is because the result of the rest is every time negative because log 𝑝𝑖 is negative or at
maximum 0.

• 𝑘 is a constant that derives from the choice of a unit of measurement. This value helps to control the
basis of the logarithm. The value of 𝑘 is equal to one if the basis of the log is 2, and it is different
otherwise.
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• 𝑝𝑖 is the probability of the success of the event i.
• log 𝑝𝑖 comes from the fact that we have disjoint events, and all of them are distinguished by the

number of characters with the base. Also, the uncertainty has to respect the additive property, so the
only possible operation that can produce the maximum probability equal to one is the logarithm (for
our purposes, 2 is the norm because of the number of bits in computing).

•
∑𝑛

𝑖=1 represents that if we have a discrete condition, 𝐻 is the average sum of each possible event.

Shannon’s entropy is not the same as its dynamical equivalent, Boltzmann’s entropy (1.3), but there is
a correlation at equilibrium. The Shannon entropy represents the average level of ‘uncertainty’ about
possible outcomes. Rather, thermodynamic entropy represents all possible combinations of a system, and
it is not possible to calculate the entropy of an intermediate situation because this property only has value
at equilibrium. Instead, Shannon’s entropy has different results in different cases, with several possible
outcomes, while the physical entropy has only one pointed result. An essential feature of the Shannon
entropy is that 𝐻 = 0 if and only if a probability has a value of one (the remaining pi could be zero).
That result is another big difference with thermodynamic entropy, where you can’t have a value of zero
as imposed by the third principle of thermodynamics (absolute zero is unattainable, the only situation
where entropy could be zero).

Using the definition of informational entropy and the common structure (at least in Shannon’s view)
of each communication system, his approach considers information such as a message from a transmitter
to a receiver, with a correlation of information, acquired and missed, in the form of entropy. This view
is widespread today, and Shannon’s entropy is now widely used in computer communications. “This
operational motivation for defining entropy in terms of data compression expresses a key concept in the
philosophy of information theory: fundamental measures of information arise as answers to fundamental
questions about the physical resources required to solve some information processing problem” (Nielsen
& Chaung, 2010, p. 501).

However, Shannon’s theory has several implications and problems that need to be considered to use it
as a unified definition of information. First, information is regarded merely as a selection of symbols from
a given set, so information has only a technical meaning in this definition. One possible consequence
is that two messages from two different sets of symbols could contain the same amount of information,
without considering their meanings. Thus, “according to A Mathematical Theory of Communication, the
classic monkey randomly pressing the typewriter keys is indeed producing a lot of information” (Floridi,
2009, p. 33), the same that we can find, for example, in a copy of an Italian vocabulary. This problem
seems to be a considerable lack in Shannon’s proposal to research a unified concept of information.
Another critical point to note is that Shannon’s proposal resembles a probability theory more than an
information theory. It can be an advantage if we want to apply the theory to communication technologies
(this is Shannon’s aim when he developed the Mathematical Theory of Communication). However, when
we try to use this method with our thoughts, where memory plays an important role, we can easily say
that “the mathematical theory of communication deals with the transmission of information, not the
information itself” (Weaver, 1949, p. 12).

4. Von Neumann’s entropy

Shannon entropy is also used in quantum mechanics, where von Neumann entropy can be conceived as
the quantum generalization of Shannon entropy. This concept of entropy was proposed by von Neumann
in 1955. While Shannon’s entropy applies to classical probability distributions, von Neumann’s entropy
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applies to quantum states described by the density matrix von Neumann entropy S is defined as:

𝑆(𝜌) = −𝑇𝑟 (𝜌 log 𝜌) (4.1)

Where 𝑇𝑟 denotes the trace operation (sum of the diagonal elements of the matrix) and log is the
logarithm of the density matrix. The entropy of a quantum state provides a quantitative measure of how
‘mixed’ a system is. The von Neumann Entropy of a pure state is equal to zero. Otherwise, a value greater
than zero represents a mixed state. An interpretation of values like this reflects the idea that when we
have a pure state, we do not have any uncertainty about the system. In contrast, for a mixed state, we are,
in a sense, lacking information about the system’s state. Thus, Shannon’s Entropy (3.1) is a special case
of von Neumann’s Entropy in quantum systems that can be described by classical statistics (when the
density matrix 𝜌 is diagonal).

In the quantum realm, the concept of the von Neumann entropy is correlated with the property of
entanglement. Indeed, entropy becomes a natural measure of the quantum correlation between subsystems
when two or more quantum systems are entangled (A and B, for example). The system’s overall state
cannot be decomposed into the individual states of the subsystems because they do not have well-defined
properties, even though we know the total state of the combined system perfectly. We can describe them
by density matrix 𝜌𝐴𝐵, but we cannot write the overall density matrix as the product of the density
matrices of the individual subsystems 𝜌𝐴 ⊗ 𝜌𝐵. Instead, the von Neumann entropy of subsystem A,
obtained by taking the partial trace of subsystem B, is a measure of the entanglement between A and B:

𝑆(𝜌𝐴) = −𝑇𝑟 (𝜌𝐴 log 𝜌𝐴) (4.2)

If 𝜌𝐴 > 0, the subsets are entangled; therefore, we cannot completely know the state of A without
taking B into account. The concept of von Neumann entropy seems very far from that of Shannon. In
the case of the similitude between the latter and the thermodynamic formulation of entropy (Hemmo &
Shenker, 2006), the only closeness is related to the shape of the equations. Here, the case seems very
similar. It is important to notice that the von Neumann entropy, from a theoretical point of view, is used
to measure a property in the quantum world: the entanglement, that is completely different from what
the Shannon entropy value tries to achieve and, once again, seems not clear from this definition what is
the concept of information.

5. Conclusions

Any of the attempts that I tried to cover in this article lack in some points to achieve a general definition
of information; one of the most general definitions of information that we can reach is something similar
to this: “The information is what is produced by an information source that is required to be reproducible
at the destination if the transmission is to be counted a success” (Timpson, 2013, p. 22). But of course,
this definition is not enough and also is a cyclical definition where the term information comes inside the
definition itself. This analysis of some historical attempts seems to give that information as a quantity is
not associated with individual messages but rather characterizes the source of messages. Being a piece
of Shannon’s information has nothing to do with being a piece of information in the everyday sense. The
common ground of the interpretations we briefly considered is that information is always related to an
object called a bit (also, von Neumann’s entropy can be correlated with something similar: the qubit).
What seems more suitable to say about information is that pieces of information are abstract items, while
transmitted information as a quantity is a property, as compressibility or channel capacity, so by no means
a concrete thing. To have a token of a piece of transmitted information, we need some physical systems,
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but it does not make what is encoded, stored, or written down physical; the fact that tokens are physical
does not mean that the types of which they are instances are.
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