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I N T R O D U C T I O N

The present volume reproduces to a great extent the lectures from
a Ph.D. class that I taught in the early 2024 at the Dipartimento di Mate-
matica e Applicazioni “Renato Caccioppoli” of the Università degli Stu-
di di Napoli Federico II. In order to make the reading more accessible
also to those who have only a basic knowledge of group theory, the
main concepts and definitions have been collected in Chapter 1. These
notions are necessary to understand the subsequent chapters.

Clearly, abelian groups are obvious examples of groups with many
abelian subgroups (all their subgroups are in fact abelian). But this
volume does not deal with the structure of abelian groups at all, and
actually some well-known structural theorems are given for granted.
They main focus is really on non-abelian groups having many abelian
subgroups in some sense. Thus, for example the structure of (soluble)
non-abelian groups with only abelian proper subgroups (that is, mi-
nimal non-abelian groups) is described in Chapter 2, while Chapter 3

deals with some of the basic features of groups whose subgroups are
either normal or abelian (that is, metahamiltonian groups). We do not
go very deep in describing the structure of metahamiltonian groups
because of the very complete survey [3]. In the final Chapter 4, we
focus on the dual situation of a non-abelian group with many abelian
quotients. This final chapter had not be taught in the class at the time,
because of the sudden death of my mentor Francesco de Giovanni. This
unpredictable loss shocked everybody, so I decided to not deliver the la-
st two lectures of the class that would have cover the subject of Chapter
4. This is also why I’m especially glad to have be given the opportunity
to publish these notes. Thus, my thanks go to Dr. Giuseppe Arnone and
Dr. Giacomo Ascione for having conceived (and realized) the wonderful
idea of a series of volumes on the Ph.D. classes that have been taught at
the Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”
of the Università degli Studi di Napoli Federico II. Finally, I wish to
thank the anonymous referee for some interesting comments that have
improved the exposition of this volume.

Napoli, 17/08/2024 Marco Trombetti





1
P R E L I M I N A R I E S

The aim of this chapter is to fix terminology and give the reader the
necessary background to understand the subsequent chapters. Most of
the mentioned notions and results can be found (with more details) in
any group theory textbook, and for the sake of completeness we refer
the reader to the following ones: [2], [17], [18].

First of all, recall that N (resp., N0) denotes the set of all positive
(resp., non-negative) integers, while Z is the set of all integers and Q is
the set of all rational numbers — we have tried to avoid the use of the
word “number” because we think it’s somewhat misleading. Naturally,
(Z,+, ·) is a ring and (Q,+, ·) is a field with the usual operations. In
dealing with subgroups of the additive or multiplicative part of a ring,
we have always tried to explicitly write the operation of the parent
structure, while the operation in case of substructures is often neglected,
unless there is some ambiguity.

The trivial (sub)group is always denoted by {1} or {0} accordingly
with the notation (multiplicative or additive) but regardless of the
nature of the objects involved — correspondingly, the identity of the
group is always denoted either by 1 or 0. Thus, for example, the trivial
subgroup of the additive group (Q,+) of the rational numbers is {0},
while the identity of an arbitrary (multiplicative) group (G, ·) is denoted
by 1. Note that if not otherwise stated, the multiplicative notation must
always be used — this is the case for instance of the group classes we
discuss in Section 1.1, and of every abstractly given abelian group.

Let G be a group, and let H be a subset of G. We write H ≤ G
(resp., H ⊴ G) to denote the fact that H is a subgroup (resp., a normal
subgroup) of G. If we wish to emphasize that H is a proper subgroup
(resp., a proper normal subgroup) of G, then we may write H < G (resp.,
H ◁ G). Recall also that H is characteristic in G if it is invariant with
respect to all automorphisms of G, i.e., if Hα = H for every α in the
automorphism group Aut(G) of G. If H is a characteristic subgroup of
G, then H ⊴ G because H is invariant under all the inner automorphisms
of G, that is, under the automorphisms g of G induced by elements
g ∈ G by conjugation — here, if g and h are elements of G, then
hg = g−1hg is the conjugate of h by g, and the automorphism g of G
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6 preliminaries

maps any element h of G to g(h) = gh. Note that if g, h ∈ G, then we
usually write g−h instead of (g−1)h = (gh)−1. For similar reasons, if H
is a characteristic subgroup of a normal subgroup of a group G, then H
is normal in G.

If H is a subgroup of G, then |G : H| denotes the index of H in G,
that is, the cardinality of the set of all left cosets of H in G, that is, the
cardinality of the set of all subsets of G of the form gH = {gh : h ∈ H}
for some g ∈ G. It is well-known that the set of lefts cosets of H in
G is equipotent to the set of all right cosets of H in G (that is, to the
set of all subsets of G of the form Hg = {hg : h ∈ H}), so the index
of H in G can be also defined as the cardinality of the set of all right
cosets of H in G. Note that H ⊴ G if and only if the set of all left cosets
of H in G coincides with the set of all right cosets of H in G, that is,
if and only if gH = Hg for all g ∈ G. If |G : H| is finite, then we say
that H has finite index in G. The relevance of finite-index subgroups in
infinite (but also finite) groups, comes from the fact that they always
contain a finite-index normal subgroup (if the index is n, then this
normal subgroup has index at most n!), and this allows us to study the
corresponding finite quotient. Recall also that a subgroup of index 2 is
necessarily normal.

The subgroup generated by H is denoted by ⟨H⟩ and it is clearly
the smallest subgroup containing H with respect to the inclusion. If H
is finite and G = ⟨H⟩, then G is finitely generated and H is a set of
generators of G. If G has an unspecified set of generators of cardina-
lity n, then we also say that G is an n-generator group. If H1, . . . , Hs
are subsets of G and h1, . . . , ht are elements of G, then we also wri-
te ⟨H1, . . . , Hs, h1, . . . , ht⟩ in place of ⟨H1 ∪ . . . ∪ Hs ∪ {h1} ∪ . . . ∪ {ht}⟩.
Finitely generated groups usually have a key role in understanding the
structure of arbitrary groups, because they allow us to study them so-
mewhat locally. The structure of an abelian finitely generated group A
is well-known and it basically boils down to the fact that A is a direct
product of finitely many cyclic (finite or infinite) groups; we should
also recall that a finite-index subgroup of a finitely generated group is
finitely generated itself, and that non-trivial finitely generated groups
have maximal subgroups. Note that every time we have a proper nor-
mal subgroup N of a group G, we also have a set of generators of G
because G = ⟨G \ N⟩; also, if E is a set of generators for G, then EN/N
is a set of generators for G/N.

If K is a further subset of G, then HK denotes the subgroup generated
by all the conjugates of elements of H by elements of K. As usual, if
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H = {h}, then we write hK instead of HK, while if K = {k}, then we
write Hk instead of HK, and we call Hk the conjugate of H by k — if U
is a conjugate of H, then there exists k ∈ G such that U = Hk. Note
that Hk ≤ G if and only if H ≤ G, and in this case we also have that
Hk = {hk : h ∈ H}. Clearly, a subgroup H of G is normal in G if and
only if HG = H (that is, if and only if H contains all its conjugates by
elements of G), while K normalizes H if HK = H — this latter condition
is equivalent to requiring that K is contained in the normalizer NG(H) of
H in G, that is, in the set of all elements g of G normalizing H (i.e., such
that Hg = H). Note that if K is a subgroup of G, then HK is normal
in ⟨H, K⟩. If H is a subgroup of G, then the index of NG(H) in G is
also the cardinality of the set of all conjugates of H in G. The set of
all elements of G centralizing every element of H is denoted as CG(H)
and is referred to as the centralizer of H in G. If H = {h}, then we also
write CG(h) in place of H — note that the index of CG(h) in G is the
cardinality of the set of all conjugates of h by elements of G, and that
CG(h) = NG(h). We also mention that in general CG(H) ≤ NG(H), and
that if N is a normal subgroup of G, then CG(N) ⊴ G and G/CG(N)
is isomorphic to a subgroup of Aut(N), so in particular G/CG(N) is
finite when N is finite. If H is a subgroup, then HG is known as the
normal closure of H in G and it is in fact the smallest normal subgroup
of G containing H. Similarly, one can define the normal core HG of H in
G as the largest normal subgroup of G contained in H (so if |G : H| is
finite, then G/HG is finite as well).

If H is a subgroup of G and n is a positive integer, then Hn denotes
the subgroup generated by all elements hn with h ranging in H. If H is
abelian, then Hn is actually the set of all elements of the form hn with
h ∈ H; also in this case (Hn)m = Hnm = (Hm)n for every other positive
integer m. Obviously, Gn is a characteristic subgroup of G.

The centre Z(G) of G is the set of all elements g ∈ G such that
xg = gx for all x ∈ G. Thus, a subset H of G is contained in Z(G) if and
only if CG(H) = G, while the quotient G/Z(G) is isomorphic to the
group Inn(G) of all inner automorphisms of G. The derived subgroup G′

of G is the subgroup generated by the commutators of elements of G,
that is,

G′ = ⟨[x, y] = x−1y−1xy = x−1xy = y−xy : x, y ∈ G⟩.

It is obvious that G/G′ is abelian (so any subgroup containing G′ is
normal in G), and actually G′ is the smallest normal subgroup N of G
such that G/N is abelian. Furthermore, the cardinality of G′ gives an
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obvious bound for the number of conjugates of an arbitrary element
of G; in particular, if G′ is finite, then every element of G has finitely
many conjugates. Now, if X and Y are subsets of G, then we put

[X, Y] = ⟨[x, y] : x ∈ X, y ∈ Y⟩,

so in particular G′ = [G, G]. As usual, if X = {x} (resp., Y = {y}), then
we also write [x, Y] (resp., [X, y]) instead of [X, Y]. Clearly, G is abelian
if and only if G = Z(G) if and only if G/Z(G) is cyclic if and only if
G′ = {1}. The derived series of G is the series

{
G(n)}

n∈N
of subgroups

recursively defined as follows:

G(0) = G and G(n+1) =
(
G(n))′.

Then G is soluble if G(n) = {1} for some non-negative integer n — in this
case, the smallest n such that G(n) = {1} is called the derived length of G;
recall that if G(2) = {1}, then G is said to be metabelian, so metabelian
groups are precisely the groups whose derived subgroup is abelian.
Similarly, the upper central series

{
Zn(G)

}
n∈N

of G is recursively defined
as follows:

Z0(G) = {1} and Z(G/Zn(G)) = Zn+1(G)/Zn(G).

Then G is nilpotent if G = Zn(G) for some non-negative integer n — in
this case, the smallest n such that G = Zn(G) is the nilpotency class of G.
The lower central series

{
γn(G)

}
n∈N

is recursively defined as follows:

γ1(G) = G and γn+1(G) = [γn(G), G].

It is easy to see that G is nilpotent of class n if and only if γn+1(G) = {1}
and n is the smallest positive integer m such that γm+1(G) = {1}.
Clearly, every nilpotent group of class c, is soluble of derived length at
most c. Note that G′ = γ2(G) = G(1), that every γi(G), G(i) and Zi(G)
is a characteristic subgroup of G, and that

γi(G/N) = γi(G)N/N and G(i)N/N = (G/N)(i)

for every normal subgroup N of G — we usually write G′′ in place
of G(2).

In the context of soluble and nilpotent groups, the basic properties
and identities about commutators usually play a central role. We
are now going to state some of them. Let g, x, y, z ∈ G. Obviously,
[x, y]g = [xg, yg]. Moreover,

[x, yz] = [x, z] · [x, y]z and [xy, z] = [x, z]y · [y, z].
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Thus, if A is any abelian normal subgroup of G, then [A, g] (resp., [g, A])
actually coincides with the set of all commutators of the form [a, g]
(resp., [g, a]) for a ∈ A. Also, if [x, y] is centralized by x (resp., by y),
then [xn, y] = [x, y]n (resp., [x, yn] = [x, y]n) for every integer n. We
employ this latter fact to prove an useful formula for computing powers
of products.

Lemma 1.1. Let x, y be elements of a group G with [[x, y], x]= [[x, y], y]=1.
Then

(xy)n = xnyn[y, x](
n
2)

for every integer n ≥ 2.

Proof. By induction on n. If n = 2, then this is clear. Suppose the
statement is true for n. Then

(xy)n+1 = (xy)(xy)n = xyxnyn[y, x](
n
2) = xn+1y[y, xn]yn[y, x](

n
2)

= xn+1yn+1[y, x]n[y, x](
n
2) = xn+1yn+1[y, x](

n+1
2 )

because [y, x] is centralized by x and y.

Since [x, y] = [y, x]−1, so [X, Y] = [Y, X] whenever X and Y are subsets
of G — note that

[x−1, y] =
(
[x, y]−1)x−1

.

If x1, . . . , xn, xn+1 are elements of G, then we define recursively

[x1] = x1 and [x1, . . . , xn+1] =
[
[x1, . . . , xn], xn+1

]
.

Similarly, if X1, . . . , Xn, Xn+1 are subsets of G, then we define recursive-
ly

[X1] = ⟨X1⟩ and [X1, . . . , Xn+1] =
[
[X1, . . . , Xn], Xn+1

]
.

If X and Y are non-empty subsets of G, then XY = ⟨X, [X, Y]⟩ provided
that 1 ∈ Y, while [X, Y]Y = [X, Y] provided that Y ≤ G. The Hall–Witt
identity states that

[x, y−1, z]y · [y, z−1, x]z · [z, x−1, y]x = 1

and implies the Three Subgroup Lemma: if H, K, L are subgroups of G
such that any two of the subgroups [H, K, L], [K, L, H] and [L, H, K] are
contained in a normal subgroup of G, then so is the third. Actually, for
metabelian groups, there is a nice version of the Hall–Witt identity.
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Lemma 1.2. Let G be a metabelian group. Then [x, y, z][y, z, x][z, x, y] = 1
for all x, y, z ∈ G.

Proof. First note that

[x, y][x, y, z] = [x, y]z = x−zy−zxzyz

=
(

x[x, z]
)−1(y[y, z]

)−1x[x, z]y[y, z]

= [z, x] · x−1[z, y] · y−1x[x, z]y[y, z]

= [z, x][z, y][z, y, x] · x−1y−1x · [x, z]y[y, z]

= [z, x] · [z, y][z, y, x][x, y] · y−1[x, z]y[y, z]

= [z, y][z, y, x][x, y] · [z, x]y−1[x, z]y · [y, z]

= [z, y][z, y, x][x, y][x, z, y][y, z] = [x, y][z, y, x][x, z, y],

so
[z, y, x][x, z, y][x, y, z]−1 = 1.

On the other hand, [z, y, x]−1 = [y, z, x] and [x, z, y]−1 = [z, x, y], so

[x, y, z]−1[y, z, x]−1[z, x, y]−1 = 1

and hence [x, y, z][y, z, x][z, x, y] = 1.

Let π be a non-empty set of prime numbers, and put π′ = P \ π,
where P is the set of all primes numbers. The order of an element g of
a group G is denoted by o(g). Also, we say that a group G is a π-group
if every element g of G is a π-element, that is, o(g) is finite and the only
primes dividing o(g) belong to π (in other words, o(g) is a π-number).
If π = {p}, then we usually write p instead of π, and p′ instead
of π′, so for example we use the term p-group (resp., p-element) instead
of π-group (resp., π-element), and p′-group (resp., p′-element) instead
of π′-group (resp., π′-element). If G is finite, then being a π-group is
equivalent to saying that the order of G is a π-number. Furthermore,
most of the times we are going to talk of a p-group without explicitly
saying that p is a prime. Recall now that a group G is periodic if all
its elements are periodic (that is, they have finite order), while G has
finite exponent exp(G) = n if gn = 1 for every g ∈ G and n is the least
positive integer for which such a property holds — more in general
we say that G has finite exponent if there exists an n such that G has
finite exponent n. Thus, every group of finite exponent is a π-group for
some π ⊆ P, and every π-group is periodic. Also, exp(G) divides n
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if and only if Gn = {1}, and exp(G) = 2 implies that G is abelian. A
group (or an element) that is not periodic is also termed aperiodic, while
a group with no non-trivial periodic elements is said to be torsion-free.
Moreover, a group has infinite exponent if it has not finite exponent. If G
is any group, then the set of all primes p for which G has elements of
order p is denoted by π(G). Clearly, if H and K are periodic subgroups
of a group G and π(H) ∩ π(K) = ∅, then H ∩ K = {1}. A couple of
observations that are relevant for us are the following ones. If n is a
positive integer and G is a π-group for some set π of primes that do
not divide n, then every element of G has a unique nth-root, that is,
for every g ∈ G, there is some element h ∈ G, which we denote by
g1/n (and by 1

n g in additively written groups), such that hn = g. If G
is a nilpotent group, then the set of all periodic elements of G form a
subgroup, which is usually referred to as the periodic part (or, the periodic
radical) of G, and it is clearly a characteristic subgroup of G; thus, every
subgroup of a nilpotent group that is generated by periodic elements is
finite. Finally, we need to recall some notation and arithmetic facts. If n
and m are non-zero integers, then (n, m) denotes the greatest common
divisor of n and m — Bézout’s Lemma states that (n, m) = un + vm for
some integers u, v. If n, m ∈ Z and ℓ ∈ N0, then n ≡ℓ m denotes that n
and m are equivalent modulo ℓ, that is, n = m + kℓ for some integer k. A
multiplicative inverse of n modulo ℓ exists if and only if (n, ℓ) = 1, that
is, if and only if n and ℓ are coprime.

If G is a group and π is a set of primes, then a Sylow π-subgroup
of G is a maximal element (with respect to the inclusion) of the set of
its π-subgroups — if we do not wish to specify the set π, or this is
clear from the context, then we speak of a Sylow subgroup. As usual,
if π = {p}, then we write Sylow p-subgroup instead of Sylow π-sub-
group, and Sylow p′-subgroup instead of Sylow π′-subgroup. Sylow’s
theorems show that in case G is finite and p is a prime, two Sylow p-sub-
groups are conjugate and the order of a Sylow p-subgroup is the maxi-
mum power of p dividing |G| — if G is soluble and finite, then similar
results also hold for an arbitrary set π of primes. It follows that a Sy-
low p-subgroup is unique if and only if it is normal, and in this case
it is clearly a characteristic subgroup. Thus, if A is a normal abelian
subgroup of the finite group G, then all its Sylow p-subgroups are cha-
racteristic in A and so normal in G. Note that every Sylow π-subgroup
of a group G contains every normal π-subgroup, so if G′ is a π-subgroup,
then G has a unique Sylow π-subgroup and such a Sylow π-subgroup
contains G′. We should also remark that Sylow subgroups of a finite
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group behave well with respect to normal subgroups and quotien-
ts. In fact, if N is any normal subgroup of a finite group G, then
PN/N and P ∩ N are Sylow p-subgroups of G/N and N, respectively,
whenever P is a Sylow p-subgroup of G.

Let p be a prime. If G is a finite p-group and n is a positive integer,
then Ωn(G) is the subgroup generated by the elements g of G such that
gpn

= 1. Of course, the subgroups

Ω1(G) ≤ Ω2(G) ≤ . . . ≤ Ωn(G) ≤ Ωn+1(G) ≤ . . .
⋃

i∈N

Ωi(G) = G

are characteristic in G, and if G is abelian, then every Ωn(G) is actually
the set of all elements g ∈ G such that gpn

= 1. Note also that G is
trivial if and only if Ω1(G) is trivial.

Let G be a group, and let N be a normal subgroup of G. Sometimes
we are going to saying that N is G-invariant instead of “N is normal in G”
because it is more convenient in speaking of a normal subgroup of G
contained somewhere. This will also apply to quotients, so for example
if we say that X/N is G-invariant, then we mean that X/N is a normal
subgroup of G/N (we could have also said that X/N is G/N-invariant).
This use of the term G-invariant comes from the idea that a subgroup to
be normal must be fixed (i.e., invariant) under the action by conjugation
of G, and such an action can be naturally extended to quotients for
example. Now, if H < K are normal subgroups of G such that H/K
has no proper non-trivial G-invariant subgroups (that is, H/K is G-
simple), then H/K is said to be a chief factor of G; if K = {1}, then we
also say that H is minimal G-invariant. The relevance of chief factors
in our context can be seen for instance from the fact that chief factors
H/K of nilpotent groups are central, meaning that H/K ≤ Z(G/K), or
[H, G] ≤ K — actually every non-trivial normal subgroup of a nilpotent
group has non-trivial intersection with the centre of the whole group.
Composition factors of arbitrary groups are harder to define and they
require the concept of an arbitrary series of subgroups, which is not
necessary for our aims. For this reason, we only concern ourselves with
defining composition factors of finite groups. First recall that a finite
(normal) series of a group is a chain of (normal) subgroups

{1} = H0 ⊴ H1 ⊴ H2 ⊴ . . . ⊴ Hn = G

connecting the trivial subgroup to the whole group. The terms of the
series are the subgroups Hi, while the factors are the sections Hi+1/Hi,
i = 0, . . . , n − 1 (a section is just a quotient of a subgroup). The length of
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the series is n, that is, the number of “jumps” in the above chain. Now,
if the factors of the series (resp., normal series) are finite simple (resp.,
finite G-simple), then the series is a composition series (resp., a chief series)
and each of its factors is a composition factor (resp., a chief factor). Note
that composition factors (resp. chief factors) may arise from different
series (resp., normal series), but the Jordan–Hölder theorem shows
that two different composition series (resp., chief series) have the same
lengths and isomorphic factors.

If G1 and G2 are groups, then G1 × G2 denotes the direct product
of G1 and G2, while G1 ⋉ G2 denotes a semidirect product of G2 by G1
— usually, the action φ defining this semidirect product is clear, but if
there is some ambiguity, then we write G1 ⋉φ G2.

Remark 1.3. If G1 and G2 are groups, and φ : G1 → Aut(G2) is a
homomorphism, then (G1 ⋉ G2, ·) is defined on the Cartesian product
G1 × G2 in such a way that

(x1, g1) · (x2, g2) =
(

x1x2, gx2
1 g2

)
,

for all x1, x2 ∈ G1 and g1, g2 ∈ G2.

The same notation is used for the inner direct product and the inner se-
midirect product, so if H and K are subgroups of G with [H, K] = H ∩ K = {1},
then ⟨H, K⟩ = H × K; while, if HK = H and H ∩ K = {1}, then
⟨H, K⟩ = K ⋉ H. One of the properties of the (semi)direct product that
we are frequently going to use is the fact that every element g ∈ G1 ⋉ G2
can be written in a unique form as g1g2, where g1 ∈ G1 and g2 ∈ G2.
Moreover, if G1 and G2 are periodic with π(G1) ∩ π(G2) = ∅, then eve-
ry subgroup H of the direct product G = G1 × G2 can be written in a
unique form as H1 × H2, where H1 ≤ G1 and H2 ≤ G2. Thus, G1 and G2
are respectively a Sylow π(G1)-subgroup and a Sylow π(G2)-subgroup
of G. Similar considerations hold for the direct product of infinitely
many groups.

Remark 1.4. The corresponding additive notation G1 ⊕ G2 for the di-
rect product of two groups G1 and G2 is slightly different from the
multiplicative one. Also, if H and K are viewed as subgroups of a
group G, then H + K simply denotes the set {h + k : h ∈ H, k ∈ K},
which is not in general a subgroup (although it is a subgroup if G is
abelian), while H ⊕K means that [H, K] = H ∩K = {0}, so in particular
H + K = ⟨H, K⟩ = H ⊕ K.

Recall also that if G is any finite group, then Frat(G) denotes
the Frattini subgroup of G, that is, the intersection of all maximal
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subgroups of G. It is easy to show that Frat(G) coincides with the
set of all non-generators of G — here, an element g of G is a non-
generator if G = ⟨g, X⟩ implies G = ⟨X⟩ for every subset X of G. Thus,
if G/ Frat(G) is cyclic, then G itself is cyclic (the converse being obvious).
Now, if G is a finite p-group for some prime p, then G is known to be
nilpotent, so in particular all its maximal subgroups are normal in G
and their quotients are groups of order p; in particular, G′ ≤ Frat(G). It
follows that if G is non-cyclic, then the abelianization of G (that is, G/G′)
is never cyclic. Moreover, since L/(H ∩ K) can always be embedded
into L/H × G/K whenever H and K are normal subgroups of an ar-
bitrary group L, so G/ Frat(G) is an elementary abelian p-group, which
means that it is a direct product of cyclic groups of order p — note that
a subgroup of an elementary abelian p-group is an elementary abelian
p-group as well. Thus, if G/ Frat(G) has order pm, then m is smallest
cardinality of a set of generators for the group G; in particular, if G is
an abelian p-group, then G can be decomposed into the direct product
of m non-trivial cyclic groups, no less no more. Having mentioned
elementary abelian p-groups here, we note that they have a very use-
ful property: if H is a subgroup of an elementary abelian p-group G,
then G = H × K for some subgroup K. The Frattini subgroup has
been introduced by Frattini [7] in 1885; in that paper, he proved that
the Frattini subgroup of a finite group is nilpotent by making use of
an insightful and renowned argument, which nowadays goes under
the name of Frattini Argument. This argument essentially consists in
a double conjugation of a subgroup, one outside a given substructure
and one inside, and makes it possible to prove for example that a finite
group G with a Sylow p-subgroup P contained in a normal subgroup N
can always be written as G = NG(P)N. Although it is now clear that
such an argument really belongs to Alfredo Capelli (see [4]), we will
still be using the term “Frattini Argument” in this volume.

For our purposes, we also need to discuss a bit endomorphisms of
abelian groups, and automorphisms of groups in general. First note
that we use the exponential notation for maps, so gτ (resp., Sτ) is the
image of the element g in the domain (resp., is the image of the set S)
under the map τ, and that we denote the composition by ◦, so τ1 ◦ τ2
maps an element g in the domain to

(
gτ1

)τ2 , although sometimes we
may simply write τ1τ2. If G1 and G2 are groups, then the expression
G1 ≃ G2 means that G1 and G2 are isomorphic, which means that there
exists an isomorphism between them. Moreover, if S is a group of
automorphisms of the group G, then we may use expressions like [G, S]
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to denote the subgroup of the holomorph Hol(G) ≃ Aut(G)⋉ G of G
generated by the commutators [g, ψ], with ψ ∈ S and g ∈ G — of course,
[G, S] is a subgroup of G, and we can also regard it as the subgroup of
G generated by the elements g−1gψ, g ∈ G and ψ ∈ S. Similar other
expressions involving elements of G and its automorphisms must be
interpreted as the corresponding group concept in the holomorph of the
group. Finally, let φ and ψ be endomorphisms of an abelian group A.
Then one can define a third endomorphism of A as the sum of φ and ψ,
that is,

φ + ψ : a ∈ A 7→ aφ + aψ ∈ A.

It is easy to see that the set End(A) of all endomorphisms of A endowed
with this sum and the composition is a ring. Thus, in some sense, we can
algebraically work with the automorphisms of A as we do with elements
of a ring, and for instance if a ∈ A and τ is a third endomorphism of A,
then

aτ◦(φ+ψ) = aτ◦φ+τ◦ψ = aτ◦φ + aτ◦ψ.

One of the most relevant and useful results in finite group theory is
the Schur–Zassenhaus Theorem. It states that if G is a finite group and N
is a normal subgroup of G such that (|N|, |G|) = 1, then there exists a
complement to X in G, that is, there exists a subgroup X of G such that
G = X ⋉ N; moreover, any two such complements are conjugate. (Of
course the complements are Sylow π(G/N)-subgroups of G, while N is
the unique Sylow π(N)-subgroup of G.) The proof of this result is not
an easy matter. In fact, the proof that the complements are conjugate
needs either the classification of finite simple groups or the Odd Order
Theorem (the celebrated result of Feit and Thompson stating that a group
of odd order is soluble). This is why we do not prove this result here
and we simply refer the reader to [18] for a proof.

On the other hand, a very useful result in infinite group theory is
the Schur’s Theorem. It states that if a group is finite over the centre, then
the derived subgroup is finite. Although Schur’s Theorem is probably
not due to Issai Schur (see [10]), we still employ this name here for the
sake of clarity. Note that many different and natural properties can
replace the “finiteness” in the statement of Schur’s Theorem, and we
refer the interested reader to [9].

Very useful results that we are going to use many times without
notice are the Dedekind Modular Law, and the Isomorphism Theorems.
In its more general formulation, the Dedekind Modular Law states that
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given any group G, two subsets U, V of G and a subgroup L of G such
that U ⊆ L, then

UV ∩ L = U(V ∩ L)

— here, if X and Y are subsets of G, their product XY is the set of all
elements xy, where x ∈ X and y ∈ Y; also, the product is always
evaluated before an intersection, so there is no need to put parenthe-
ses around UV. In particular, if U, V and UV are subgroups of G,
then not only UV ∩ L is a subgroup of G but such is also U(V ∩ L).
We remark here that the product XY of two subgroups X and Y is
a subgroup if and only if XY = YX, so in particular XY is a su-
bgroup whenever X ≤ NG(Y) or Y ≤ NG(X), and we also remark
that if X1, . . . , Xn, Xn+1 are subgroups of G such that X2 ≤ NG(X1),
X3 ≤ NG(X1X2), . . . , Xn+1 ≤ NG(X1 . . . Xn), then one recursively de-
fines X1 . . . Xn = (X1 . . . Xn)Xn+1. The three Isomorphism Theorems are
the following ones:

• If φ : G → H is a homomorphism of groups, then we have that
G/ Ker(φ)≃ Im(H), where Ker(φ) denotes the kernel of φ, that is,
the set of all elements of G mapped to the identity element of H
by φ.

• If N, M are normal subgroups of a group G, then (G/N)/(M/N)
is isomorphic to G/M.

• If G is a group, N ⊴ G, and M ≤ G, then MN/N ≃ M/(M ∩ N).

We cannot emphasize enough the relevance of these theorems in the
study of the theory of groups.

In the final chapter of this volume we are going to need some
basic and certainly well-known results about fields and modules over
commutative rings. First recall that if (R,+, ·) is a commutative ring
with multiplicative identity 1, then an R-module M consists of an abelian
group (M,+) and an operation

· : R × M → M

such that for all r, s ∈ R and x, y ∈ M, we have:

• r · (x + y) = r · x + r · y

• (r + s) · x = r · x + s · x

• (rs) · x = r · (s · x)
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• 1 · x = x

Clearly, abelian groups are precisely the Z-modules. More in general,
if we have a commutative subring S of the endomorphism ring of an
abelian group A, then A can be naturally regarded as an S-module.
Recall also that if R is a field, then M is a vector space, so we can
employ the well-known machinery from linear algebra (dimensions of
subspaces, linear dependency and independency, and so on).

Now, let (K,+, ·) be a field of characteristic q. It is well-known that
every finite subgroup of (K, ·) is cyclic. Moreover, if q = 0, then the
prime field E(K) of K (that is, the smallest subfield of K) is isomorphic
to the field of rational numbers, otherwise if q > 0, then E(K) is
isomorphic to the field

(
GF(q),+, ·

)
of order q. Note that the field of

order p is just the set of all integers modulo p endowed with the usual
operations. If n is any positive integer, then an element ν of K such that
νn = 1 is an nth root of unity. If ν is a generator of the subgroup of (K, ·)
made by the nth roots of unity, then ν is said to be a primitive nth
root of unity. The following well-known result will be very important
in describing finite soluble groups in which all quotients except one
are abelian; its proof relies on standard results on splitting fields and
degrees of field extensions, and can for instance be found in [20].

Theorem 1.5. Let n > 1 be an integer, (K,+, ·) a field of characteristic
q ≥ 0, and ν a primitive nth root of unity. If d is the degree of an irreducible
polynomial over E(K) having ν as a root, then the following holds:

• If q = 0, then d = ϕ(n).

• If q > 0, then d is the smallest positive integer k such that n divides
qk − 1.

1.1 relevant examples of groups

In this section we discuss some relevant classes of groups that will
frequently appear in the subsequent chapters.

Cyclic groups
The infinite cyclic group is denoted by Z, while the finite cyclic group
of order n is denoted by Zn for every positive integer n. A strong form
of the converse of Lagrange’s theorem holds in cyclic groups. In fact,
if G is a cyclic group and d is any positive integer diving the order
of G when G is finite, then there exists one and only one subgroup
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of G whose index is d. In particular, if G is a finite cyclic group of
order n, then there exists one and only one subgroup of order d for
every positive integer d dividing n.

The only non-trivial automorphism of Z is the inversion, while
Aut(Zn) is isomorphic to the multiplicative group of the integers mo-
dulo ϕ(h), where ϕ(n) is the Euler’s totient function, that is, ϕ(n) counts
the positive integers up to n that are relatively prime to n. If n = pm

for some odd prime p and some positive integer m, then Aut(Zn) is
cyclic of order pm−1(p − 1), while Aut(Z2) = {1}, Aut(Z4) ≃ Z2 and
Aut(Z2m) ≃ Z2 × Z2m−2 for any integer m ≥ 8. In particular, the only
non-trivial automorphism of a cyclic group of order 4 is the inversion.

Free abelian groups
A free abelian group is just a direct product of arbitrarily many infinite
cyclic groups. Thus, finitely generated free abelian groups are precisely
the finitely generated torsion-free abelian groups. If a free abelian group
F is a direct product of n infinite cyclic groups, then n is an invariant of
F. In other words, F can be only decomposed in the direct product of
precisely n infinite cyclic groups, no less no more. Also, every chain of
subgroups

{1} = X0 ≤ X1 ≤ . . . ≤ Xm = F

with cyclic factors has precisely n factors that are isomorphic to (Z,+).
It easily follows that any subgroup H of F such that F/H is finite
must be generated by at least n elements — in particular, the minimal
cardinality for a set of generators of F is n.

Klein 4-group
This is the direct product of two copies of the cyclic group Z2 of order 2,
and it is usually denoted by V4.

Dihedral and metacyclic groups
Let A be an abelian group. The dihedral group Dih(A) on A is the
semidirect product Z2 ⋉ A, where the action is given by the inversion.
In other words, if x is a generator of Z2, then ax = a−1 for all a ∈ A.
If A is finite cyclic of order n, then the dihedral group on A is also
denoted by Dih(n) or D2n and is referred to as the dihedral group of order
n. Of course, the dihedral group of order n is always soluble, while
it is nilpotent if and only if n is a power of 2. If A ≃ Z, then Dih(A)
is called the infinite dihedral group and is often denoted either by the
symbol Dih(∞) or by the symbol D∞. Clearly, the infinite dihedral
group is metabelian but not nilpotent.
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Dihedral groups for which A is cyclic are nice examples of metacyclic
groups, that is, of groups G for which there exists a cyclic normal
subgroup N with G/N cyclic. Other examples of metacyclic groups are
easily constructed as semidirect products of two cyclic groups, and, as
we shall see in the next chapter, metacyclic groups play a major role in
the classification of finite minimal non-abelian groups.

Quaternion groups
Let n a non-negative integer. The quaternion group Q2n of order 2n is the
(finite) group having the following presentation

⟨x, y : x2n = 1, xn = y2, y−1xy = x−1⟩.

Since we do really need only the quaternion group of order 8, we are
going to ignore the precise meaning of the above presentation, and we
move to describe the aforementioned group. Put Q8 = {±1,±i,±j,±k}
and define a multiplication · in Q8 in such a way that 1 is the identity,
−1 · u = −u for all u ∈ Q8, and ij = k, jk = i, ki = j, ji = −k, kj = −i,
ik = −j, i2 = j2 = k2 = −1. It is easy to see that −1 is the only element
of order 2 of Q8, that ⟨−1⟩ = Z(Q8) = Q′

8 and that Q8/⟨−1⟩ ≃ V4.

Symmetric and alternating groups
Let Ω be a set. The (restricted) symmetric group Sym(Ω) on Ω is the
set of all finitary bijective functions from Ω to Ω endowed with the
composition — here finitary means that the functions only move finitely
many elements of Ω. Of course, if Ω is finite and has cardinality n, then
we also denote Sym(Ω) by Sym(n) and we call it the symmetric group
of degree n. Clearly, Sym(0) = Sym(1) = {1}, while Sym(2) ≃ Z2 and
Sym(3) ≃ Dih(3).

The alternating group Alt(Ω) on Ω is the set of all even permutations
of Sym(Ω), that is, the set of all permutations that can be written as a
product of an even number of transpositions (permutations moving preci-
sely two elements). Again, if Ω is finite of order n, then we write Alt(n)
instead of Alt(Ω) and we speak of the alternating group of degree n. Clear-
ly, Alt(0) = Alt(1) = Alt(2) = {1}, and it is well-known that Alt(Ω)
is a normal subgroup of Sym(Ω) such that | Sym(Ω)/ Alt(Ω)| = 2 for
|Ω| ≥ 2. It should be also remarked that Alt(Ω) is simple if |Ω| ≥ 5 and
that Alt(4) ≃ Z3 ⋉ V4, where Z3 acts on V4 by cycling its non-trivial
elements — note that V4 and Alt(4) are the only non-trivial proper
normal subgroups of Sym(4), so they are even characteristic subgroups.

Groups satisfying the maximal condition on subgroups
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A group G is said to satisfy the maximal condition on subgroups if every set
of subgroups of G has a maximal element with respect to the inclusion.
This property is equivalent to requiring that every subgroup of G is
finitely generated. It turns out that the maximal condition on subgroups
is extension closed, so if N is any normal subgroup of a group G, and
both N and G/N satisfy the maximal condition on subgroups, then
also G has the same property. Obviously, every finite group satisfies the
maximal condition on subgroups, but also the infinite cyclic group has
the same property. Thus, if G is a group with a series of subgroups

{1} = H0 ⊴ H1 ⊴ . . . ⊴ Hn = G

whose factors are either cyclic or finite (that is, G is polycyclic-by-finite),
then G satisfies the maximal condition on subgroups. For example,
if A is any finitely generated abelian group, then Dih(A) satisfies
the maximal condition on subgroups; more in general, any finitely
generated group with a finite-index abelian subgroup satisfies the
maximal condition on subgroups. Further relevant examples of groups
satisfying the maximal condition on subgroups are the finitely generated
nilpotent groups.

Divisible groups
Let p be a prime. The Prüfer p-group is the only infinite p-group whose
subgroups are totally ordered by inclusion. It can be identified with the
set of all pnth roots of unity (in the field of complex numbers) endowed
with multiplication, where n ranges in N0. As usual, if we do not wish
to specify the prime p, then we simply speak of a Prüfer group.

Prüfer groups are the easiest non-trivial periodic examples of divisible
groups, that is, of abelian groups G such that for every n ∈ N and
for every g ∈ G, there exists h ∈ G with hn = g. On the other hand,
the additive group of the rational numbers is the easiest example of a
non-periodic divisible group. It turns out that arbitrary divisible groups
are not far from the aforementioned types of groups. In fact, a group is
divisible if and only if it is a direct product of Prüfer groups and copies
of the additive group of the rational numbers.

In order to verify that an abelian group G is divisible, it is enough
to show that G = Gn for every n ∈ N — actually, it is enough to prove
that Gq = G for every prime q. We should also note that non-trivial
finite abelian groups cannot be divisible, so divisible groups have no
non-trivial finite homomorphic images — in fact, if N is any normal
subgroup of a divisible group G, then G/N is divisible as well.
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Finally, we spend some more words about (Q,+). It is well-known
that (Q,+) is locally cyclic, that is, every finitely generated subgroup
of (Q,+) is cyclic, and that every quotient of (Q,+) with respect to
a non-trivial subgroup is periodic. Also, for every prime p, the Sy-
low p-subgroup of (Q,+)/(Z,+) is a Prüfer p-group and it is genera-
ted by the cosets 1/pn + Z, where n ∈ N — a similar remark holds for
every periodic quotient of (Q,+).

Remark 1.6. Note that also every Prüfer group is locally cyclic. This
can either be seen directly, or you can observe that every homomorphic
image of a locally cyclic group is still locally cyclic, so Prüfer groups
are locally cyclic because they are isomorphic to quotients of the locally
cyclic group (Q,+).

As a field, (Q,+, ·) has only one automorphism: the identity. On the
other hand, Aut(Q,+) ≃ (Q, ·) and it turns out that (Q, ·) is isomorphic
to the direct product of infinitely many infinite cyclic groups and a
cyclic group of order 2.

1.2 abstract and concrete group classes

In this section, we give a basic outline of the general theory of abstract
group classes, and we define all group classes that may have been
mentioned in the volume but that are not essential to the study of the
volume itself. The interested reader can found additional information
in the quoted textbooks, and in particular we refer to the first chapter
of [17] for details about the theory of abstract classes of groups.

A class of groups or group class X is a class in the usual sense of set
theory consisting of groups, and satisfying the following properties:

(1) X contains a trivial group.

(2) If X contains a group G, then X contains all groups that are
isomorphic to G.

It is customary to identify group classes and group-theoretic proper-
ties, so when we speak for example of the property of being abelian, we
are actually thinking of the class of all abelian groups. For obvious rea-
sons this identification can sometimes lead to not be wanting property
(1) above: for instance, one may be wanting to be free of considering
the class of non-abelian groups without being forced to add the trivial
groups (see for example [8]). However, removing the trivial groups can
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sometimes lead to complications instead of simplifications, so this is
why we stick here to the above definition.

The closure properties of a group class X are probably the most
relevant things to know about an abstract group class. They usually
allow us to find many interesting groups in X, and to exclude that
certain groups belong to X. Now, a group class X is said to be

• subgroup closed (or closed with respect to forming subgroups) if it
contains every subgroup of a group in X,

• quotient closed (or closed with respect to forming quotients, or closed
with respect to forming homomorphic images) if it contains all the
homomorphic images of groups in X,

• extension closed (or closed with respect to forming extension) if it
contains all groups G having a normal subgroup N such that both
G/N and N belong to X.

There are many other interesting closure properties concerning group
classes but for the sake of the volume we content ourselves with the
above ones. The most natural group classes are usually closed with
respect to forming subgroups and quotients, and this is in fact the
case for the class of soluble groups and for that of nilpotent groups, as
well as for most of the other properties we deal with in this volume.
However, although soluble groups are closed with respect to forming
extensions, nilpotent groups are not.

For any group class X, one can construct several other group classes
that greatly extends this group class and that allow us to study new
groups using the properties of the class X from which we started. This
is why the group class X is usually a well understood group class such
as the class of finite groups or that of soluble groups. In order to give
examples of such constructions, let G be a group, and X a group class.

• G is said to be hyperabelian if it has an ascending normal series
with abelian factors, that is, if there exists an ascending chain of
normal subgroups of G

{1} = G0 ≤ G1 ≤ . . . Gα ≤ Gα+1 ≤ . . . Gβ = G

(here, α and β are ordinal numbers) such that Gγ+1/Gγ is abelian
for every γ < β.

• G is locally X if all its finitely generated subgroups are contained in
an X-subgroup. Clearly, if X is subgroup closed, then G is locally
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X if and only all its finitely generated are X-groups. Thus, for
example, a locally soluble (resp., locally finite) group is just a group
whose finitely generated subgroups are soluble (resp., finite).

• G is residually X if there is a set {Nλ}λ∈Λ of normal subgroups of
G such that G/Nλ ∈ X for every λ ∈ Λ and

⋂
λ∈Λ Nλ = {1}. Thus,

G is residually X if and only if for every non-trivial element g of G,
there is a normal subgroup N of G such that g /∈ N and G/N ∈ X.
For example, a residually soluble (resp., residually finite) group is
a group such that the intersection of all normal subgroups with
soluble (resp., finite) quotient is trivial. Note that every polycyclic-
by-finite group is residually finite, and that such is every finitely
generated metabelian group. In order to cite this latter deep result
of Philip Hall, we state it as a theorem.

Theorem 1.7 (see [17], Theorem 9.51). Let G be a metabelian group.
If G is finitely generated, then G is residually finite.

• G is X-by-finite if it has a finite-index subgroup X ∈ X. If X is
subgroup closed, then this is equivalent to requiring that G has a
finite-index normal subgroup N ∈ X. Thus, for example an abelian-
by-finite group is a group having a normal abelian subgroup of
finite index.

1.3 relevant preliminary results

In this section we state and prove three relevant auxiliary results that
we need in the next chapters, and that are of an independent interest.

Theorem 1.8. Let G be a finite non-abelian group. If A is an abelian subgroup
of G of prime index p, then |G| = p · |G′| · |Z(G)|.

Proof. Take g in G \ A. The map

φ : a ∈ A 7→ aφ = [a, g] ∈ A

is a homomorphism of A because

(a1a2)
φ = [a1a2, g] = [a1, g]a2 [a2, g] = [a1, g][a2, g] = aφ

1 · aφ
2

for every a1, a2 ∈ A. Moreover, K = Im(φ) = [A, g] ≤ G′ ≤ A, while
Ker(φ) = CA(g) = Z(G) because G is non-abelian. Since

[a, g]g = [ag, g] ∈ K
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for every a ∈ A, so K is normalized by g and A, and hence even
by G = ⟨g, A⟩. Now, G/K is abelian, so G′ = K. Therefore

|A| = | Im(φ)| · |Ker(φ)| = |G′| · |Z(G)|

and consequently, |G| = p · |A| = p · |G′| · |Z(G)|. The statement is
proved.

Theorem 1.9. Let p be a prime. If A is a p′-group of automorphisms of the
finite abelian p-group P, then P = CP(A)× [P, A].

Proof. We use additive notation for the elements of P. Let n be the order
of A, and consider the following map

φ : g ∈ P 7→ gφ =
1
n ∑

ψ∈A
gψ ∈ P,

which is well-defined because ∑ψ∈A gψ is an element of P and p does
not divide n.

Since P is abelian, so φ is easily seen to be an endomorphism of P.
We can write φ = 1

n ∑ψ∈A ψ. Now, if τ is any element of A, then

φ ◦ τ =
( 1

n ∑
ψ∈A

ψ
)
◦ τ =

1
n ∑

ψ∈A
(ψ ◦ τ) = φ

and similarly φ = τ ◦ φ. Therefore φ centralizes the elements of A and

φ2 = φ ◦
( 1

n ∑
ψ∈A

ψ
)
=

1
n ∑

ψ∈A
(φ ◦ ψ) =

1
n ∑

ψ∈A
ψ = φ.

Claim: CP(A) = Pφ, and xφ = x for every x ∈ Pφ.
If x ∈ P, then xφ◦ψ = xφ for every ψ ∈ A, so xφ ∈ CP(A). Conversely,
if x ∈ CP(A), then

xφ =
1
n ∑

ψ∈A
xψ =

1
n ∑

ψ∈A
x =

1
n

nx = x

and hence x belongs to Pφ. The claim is proved.

Put H = [P, A] and H1 = {x − xφ : x ∈ P}. Since idP −φ is an
endomorphism, so H1 is a subgroup of P.

Claim: H = H1.
Let x ∈ P and τ ∈ A. Then

(−x + xτ)φ = −xφ + xτ◦φ = −xφ + xφ = 0,
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and hence −x + xτ ∈ H1. It follows that H ≤ H1. Conversely,

x − xφ =
1
n ∑

ψ∈A
(x − xψ)

is the nth-root of a sum of elements of H, so it belongs to H — conse-
quently, H1 ≤ H. Therefore H = H1 and the claim is proved.

Now, P = Pφ + H1 because x = xφ + (x − xφ) for every x ∈ P. Also,
if x ∈ Pφ ∩ H1, then x = xφ and x = y − yφ for some y ∈ P, so

x = xφ = yφ − yφ◦φ = yφ − yφ = 0.

Therefore P = Pφ ⊕ H1 = CP(A)⊕ [P, A].

Corollary 1.10. Let p be a prime. If A is a p′-group of automorphisms of a
finite abelian p-group P and [Ω1(P), A] = {1}, then A = {1}.

Proof. By Theorem 1.9, we can write P = CP(A)× [P, A]. Since Ω1(P)
is the direct product of Ω1(CP(A)) and Ω1([P, A]), it follows that
Ω1([P, A]) = {1} and hence [P, A] = {1}.

The solubility assumption in our last result is not really necessary,
but proving the theorem without this hypothesis requires the classifica-
tion of finite simple groups, so we content ourselves to state and prove
the soluble case.

Theorem 1.11. Let G be a finite soluble group. If P = NG(P) for every
prime q and every Sylow q-subgroup P of G, then G is a p-group for some
prime p.

Proof. First, we show that the hypothesis is inherited with respect to
forming homomorphic images. To this aim, let N be any normal
subgroup of G, and suppose that P/N is a Sylow q-subgroup of G/N
for some prime q. If Q is any Sylow q-subgroup of P, then P = QN.
Moreover, if we write K/N = NG/N(P/N), then P is a normal subgroup
of K, and the Frattini Argument now implies that K = NK(Q)N =
QN = P. Thus, G/N satisfies the hypothesis of the statement.

Now, suppose that G is a minimal counterexample to the conclusion
of the statement, and let N be a non-trivial proper normal subgroup
(recall that G is soluble). Then G/N is a p-group for some prime p, so
N is not a p-group. If q is any other prime dividing the order of G,
and Q is a Sylow q-subgroup of G, then Q ≤ N and hence the Frattini
Argument yields that G = NG(Q)N = QN = N, a contradiction.





2
M I N I M A L N O N - A B E L I A N G R O U P S

The most obvious examples of non-abelian groups with many abelian
subgroups are certainly the non-abelian groups in which all proper sub-
groups are abelian. Very basic examples of this type are the following
ones:

• the symmetric group Sym(3) ≃ Dih(3) of degree 3, and more
in general every dihedral group of order 2p, where p is an odd
prime;

• the quaternion group Q8 of order 8;

• the dihedral group of order 8;

• every non-abelian group of order p3 for any prime p (because a
group of order q2 is abelian for any prime q).

On the other hand, there are much more problematic types of
minimal non-abelian groups. For example, the standard Tarski monsters
(that is, infinite groups whose non-trivial proper subgroups have prime
order) are obviously minimal non-abelian. Actually, Ol’shanskiı̌ proved
that we can have minimal non-abelian groups in which de facto we
can choose the non-trivial proper subgroups (see [16], Theorem 35.1,
and [15]), and that one can also construct the extended Tarski monsters
(see [16], Theorem 31.8), that is, infinite groups G having a normal
subgroup N such that:

• G/N is a standard Tarski monster,

• N is cyclic of prime power order pr ̸= 1, and

• for every subgroup H of G, either H ≤ N or N < H.

A complete description of all Tarski and extended Tarski groups is
not known and seems difficult to establish, but we can at least notice
that all these groups have infinite simple sections, so it is to get rid of
them if we ask for some solubility condition.

The following picture is the Hasse diagram of the subgroup lattice
of an extended Tarski monster, and it is the picture on the cover of this

27



28 minimal non-abelian groups

volume. It immediately shows how simple is the large-scale structure
of an (extended) Tarski monster compared to its inner structure.

Finite minimal non-abelian groups have been considered for the first
time by Miller and Moreno [11] in 1903, and nowadays their structure
is completely clear although the information is scattered through some
papers, books and folklore (see for example [2], Exercise 8a, p.29). Thus,
the aim of this chapter is to collect in a single place the full structural
theorems concerning finite minimal non-abelian groups. First we show
that this does also take care of the infinite soluble case.

Theorem 2.1. Let G be a minimal non-abelian group. Then G is finite if and
only if it is soluble.

Proof. First suppose that G is finite (of order n) and not soluble —
since G is finite, we may assume it is a counterexample of smallest
possible order. If N is any non-trivial proper normal subgroup of G,
then N is abelian and G/N is either abelian or minimal non-abelian.
In any case, G/N is soluble by minimality of G, so G is soluble too
(recall that solubility is closed by extensions). Therefore G is simple
non-abelian and in particular Z(G) = {1}. Moreover, if M1 and M2 are
distinct maximal subgroups of G, then M1 ∩ M2 is centralized by both
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M1 and M2 and so also by G = ⟨M1, M2⟩. Thus, M1 ∩ M2 is trivial
because it is contained in the centre of G.

Now, let M be a maximal subgroup of G, and put |M| = m. Since M
is not normal in G, so NG(M) = M, which means that M has n/m
conjugates in G. These conjugates account for (m − 1)n/m non-trivial
elements of G, because the maximal subgroups of G have pairwise
trivial intersection. Therefore the number of non-trivial elements of G
in the conjugates of M is at least

n − n/m ≥ n/2

(note that m ≥ 2).
The index of M in G is at least 2, so n/m ≥ 2 and consequently

n − n/m ≤ n − 2 < n − 1.

Since the number of non-trivial elements of G is n − 1, so there is a
maximal subgroup of G that is not conjugate to M. But the number of
non-trivial elements contained in the conjugates of this new maximal
subgroup is again at least n/2, so the number of non-trivial elements of
G is at least n, which is not possible. This contradiction shows that if G
is finite, then it is soluble.

Suppose now that G is soluble and infinite. Since G is non-abelian,
so there are two elements a and b of G such that [a, b] ̸= 1; in particu-
lar, G = ⟨a, b⟩ is finitely generated.

If G has two distinct maximal subgroups M1 and M2 of finite index,
then M1 ∩ M2 is a finite-index subgroup of G contained in Z

(
⟨M1, M2⟩

)
=

Z(G), so G/Z(G) is finite. Consequently G′ is finite by Schur’s theorem
(see [17], Theorem 4.12) and G/G′ is infinite. Since G/G′ is finitely ge-
nerated, so G has a normal subgroup X whose quotient G/X is infinite
cyclic. Now, if g is any element of infinite order modulo X and p is
a prime, then ⟨gp⟩X < G. Hence [gp, X] = {1} for every prime p and
so [g, X] = {1}. Since G is generated by the elements of infinite order
modulo X, so X is central in G. This means that G/Z(G) is cyclic, and
consequently that G is abelian, a contradiction.

Thus, G has only one maximal subgroup of finite index. In particular,
G/G′ is cyclic and finite. Let g ∈ G be such that G = ⟨g, G′⟩, and put
N = ⟨g⟩ ∩ G′. Clearly, N is centralized by g and G′ (note that G′ is
abelian), so it is central in G. If G/N is finite, then G′ is finite by Schur’s
theorem and so G is finite, a contradiction. Thus, G/N is infinite.
Moreover, G/N = ⟨gN⟩⋉ G′/N. Since G′ is a finite-index subgroup
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of G, so it is finitely generated as well, and hence G′/N is infinite and
finitely generated. If p and q are distinct primes, then ⟨g⟩(G′)pN and
⟨g⟩(G′)qN are proper subgroups of G, so they are abelian. Consequently,
g centralizes (G′)pqN. On the other hand, (G′)pqN is contained in the
abelian subgroup G′, and hence (G′)pqN is a central subgroup of G of
finite index. Again, Schur’s theorem yields that G′ is finite, and gives
the contradiction that G is finite as well.

Of course, if our aim is just to avoid Tarski monsters, then solubility
may feel as a very strong requirement in the above statement. In fact,
there are much better ways to avoid pathologies like Tarski monsters.
One of these has been introduced by Černikov [5] in 1970, and it is
nowadays considered as the broadest group class that is free of this
type of monsters. A group G is locally graded if every non-trivial finitely
generated subgroup of G has a proper subgroup of finite index. Clearly,
all finite groups and all soluble groups are locally graded, but such
are also for example the hyperabelian, locally soluble, locally finite,
residually soluble, and residually finite groups. The class of locally
graded groups has many nice closure properties: it is in fact closed with
respect to forming subgroups, extensions, and Cartesian products. In
particular, every group with a finite term in its derived series is locally
graded. However, it should be remarked that locally graded groups are
not closed with respect to forming quotients because the free groups
are residually finite (so they are locally graded), but Tarski monsters
appear as quotients of non-abelian free groups.

Corollary 2.2. Let G be a minimal non-abelian group. If G is locally graded,
then G is finite (and soluble).

Proof. Since G is not abelian, so it has non-commuting elements a and b,
and hence G = ⟨a, b⟩. Being locally graded, G has a proper normal
subgroup N of finite index. Now, G/N is either abelian or minimal
non-abelian, so in both cases G/N is soluble by Theorem 2.1. But N
is abelian, and so G is soluble. A further application of Theorem 2.1
yields that G is finite and completes the proof.

The classification of finite minimal non-abelian groups splits in two
cases according to the group having order a power of a prime or not.
As shown by the next result, in the latter case there cannot be many
distinct primes dividing its order.
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Lemma 2.3. Let G be a finite minimal non-abelian group. Then the order
of G is divided by at most two distinct prime numbers.

Proof. Suppose by way of contradiction that |G| = pe1
1 pe2

2 . . . pek
k , whe-

re the pi’s are pairwise distinct primes, the ei’s are positive integers,
and k ≥ 3. Since G is soluble, so G′ < G and hence there exists a ma-
ximal subgroup M of G containing G′ and such that |G/M| = pi for
some 1 ≤ i ≤ k; in particular, M ⊴ G. Now, M is abelian, so its Sylow
subgroups are characteristic in M and hence normal in G. Let P be a
Sylow pi-subgroup of G and let Q be the Hall p′i-subgroup of M. Then
|M/Q| = pei−1

i , so Q is also the Hall p′i-subgroup of G, and G = PiQ.
If Pj is any Sylow pj-subgroup of G for some j ̸= i with 1 ≤ j ≤ k,
then Pj ≤ M, so Pj ⊴ G. Consequently, PiPj is a proper subgroup of
G (because |G| is divided by at least three distinct primes), and hence
Pi centralizes Pj. The arbitrariness of j shows that Pi centralizes Q.
Since G = PiQ and both Pi and Q are abelian, so G itself is abelian, a
contradiction.

In the following two sections, we separately deal with minimal non-
abelian groups of prime power order and with minimal non-abelian
groups whose order is not a power of a prime.

2.1 the order is a power of a prime

Lemma 2.4. Let G be a non-abelian group of order 8, then either G ≃ Q8 or
G ≃ D8.

Proof. If all elements of G have order 2, then (ab)−1 = ab for every
a, b ∈ G, so [a, b] = 1 and hence G is abelian, a contradiction. Then G
has an element x of order 4. If X = ⟨x⟩, then |G : X| = 2, so X ⊴ G and
G = ⟨x, y⟩ for every y ∈ G \ X. It follows that xy = x−1. Now, if y can
be chosen of order 2, then G ≃ D8, else G ≃ Q8.

Theorem 2.5. Let G be a finite p-group for some prime p. Then G is minimal
non-abelian if and only if one of the following alternatives holds:

(1) G = ⟨a⟩⋉ ⟨b⟩, where o(a) = pn, o(b) = pm, ba = b1+pm−1
, and n, m

are integers with n ≥ 1 and m ≥ 2.

(2) G ≃ Q8.
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(3) G = ⟨a⟩ ⋉
(
⟨b⟩ × ⟨c⟩

)
, where o(a) = pn, o(b) = pm, o(c) = p,

ba = bc, ca = c, and n, m are positive integers such that m + n > 2
when p = 2.

In particular, if G is minimal non-abelian, then |G′| = p, G/G′ is isomor-
phic to the direct product of two non-trivial cyclic groups, and G/Z(G) is
elementary abelian of order p2.

Proof. First suppose that G is minimal non-abelian. If G has only one
maximal subgroup, then this subgroup coincides with the Frattini
subgroup Frat(G) of G, so G/ Frat(G) is cyclic and consequently G is
cyclic, a contradiction. Thus, G has at least two maximal subgroups M1
and M2, say. Since every maximal subgroup of a finite p-group is
normal, it follows that |G/M1| = |G/M2| = p and hence that the order
of G/(M1 ∩ M2) is p2. Moreover, M1 ∩ M2 is centralized by the abelian
subgroups M1 and M2, so M1 ∩ M2 ≤ Z(G). But G is not abelian, and
so M1 ∩ M2 = Z(G). Thus, Theorem 1.8 implies that |G′| = p. Also,
G/Z(G) is abelian and so G′ ≤ Z(G), which means that quotient G/G′

cannot be cyclic.
Since G is non-abelian, so we can find two non-commuting elements

a and b of G. Consequently, G = ⟨a, b⟩. Put also G′ = ⟨c⟩ and U =
Ω1(G). Since G/G′ is a 2-generator abelian p-group, so we may assume
G/G′ = ⟨aG′⟩ × ⟨bG′⟩, where aG′ has order pn and bG′ has order pm.
Of course, both n and m are positive integers because otherwise G/Z(G)
(and also G/ Frat(G)) would be a cyclic group and G would be abelian
(or cyclic).

Now, UG′/G′ ≤ Ω1(G/G′), so |U| ≤ p3. We divide the proof in
three cases according to the order of U. First suppose that |U| = p3. In
this case there are two options: either U is abelian or not. If U is abelian,
then U is the direct product of three cyclic groups of order p. In this
case, H = ⟨b, c⟩ is abelian 2-generator, |Ω1(H)| = p2 and H/Ω1(H) is
cyclic, so H is the direct product of a cyclic group of order p and a cyclic
group of order pm; in particular, we may assume that H = ⟨b⟩ × ⟨c⟩,
so o(b) = pm. Similarly, we may assume that ⟨a, c⟩ = ⟨a⟩ × ⟨c⟩, so
o(a) = pn. It follows that

G = ⟨a, b⟩ = ⟨a⟩⋉ H = ⟨a⟩⋉
(
⟨b⟩ × ⟨c⟩

)
.

Obviously, ba = bcu for some integer 0 ≤ u < p, so replacing c by cu,
we obtain ba = bc. Finally, if p = 2 and m + n = 2, then |G| = p3 = |U|,
so G is abelian, a contradiction. Therefore, m + n > 2 when p = 2, and
we are in case (3).
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Assume that U is non-abelian, so G = U and hence G has order p3.
If p = 2, then we are in case (1) or (2) by Lemma 2.4, although case (2)
cannot happen here because U = G. If p > 2, then Lemma 1.1 yields
that (xy)p = xpyp for every x, y ∈ G, so G has exponent p. Thus,
G = ⟨a⟩⋉

(
⟨b⟩ × ⟨c⟩

)
, where a and b have order p, and ba = bcu for

some positive integer u. Replacing c by cu, we see that (3) holds.

Suppose |U| = p2. It is possible to assume that U/G′ = Ω1(⟨aG′⟩),
and so also that ⟨a, c⟩ = ⟨a⟩ × ⟨c⟩. Moreover, U ∩ ⟨b, c⟩ = ⟨c⟩, so
the abelian group ⟨b, c⟩ is cyclic, and hence ⟨b, c⟩ = ⟨b⟩ because c is
in Frat(⟨b, c⟩). Then G = ⟨a⟩⋉ ⟨b⟩, where o(a) = pn and o(b) = pm+1.
Now, ba = bcu = b1+upm

, where u is a positive integer that is prime to p.
Let v be a positive integer with uv ≡p 1. If we replace a by av, then
ba = b1+pm

and we are in case (2).

Finally, suppose |U| = p, so U = G′. Let V/G′ = Ω1(G/G′), so V
has order p3. If V is abelian, then it must be cyclic, a contradiction.
Thus, V = G has order p3. If p = 2, then we are in case (1) or (2)
by Lemma 2.4, although case (1) cannot happen here because U = G′.
If p > 2, then Lemma 1.1 yields that (xy)p = xpyp for every x, y ∈ G,
so G has exponent p. Therefore G = U = G′, a contradiction.

Assume conversely that G satisfies one of the three conditions in
the statement. If G ≃ Q8, then G is obviously minimal non-abelian.
Suppose G = ⟨a⟩⋉ ⟨b⟩ satisfies (1), and let X be a non-abelian subgroup
of G. Note that

(bp)a = (ba)p =
(
b1+pm−1)p

= bp and bap
= bbp·pm−1

= b,

so ap, bp ∈ Z(G). If X ∩ ⟨b⟩ ≤ ⟨bp⟩ ≤ Z(G), then X/X ∩ ⟨b⟩ is cyclic,
and so X is abelian, a contradiction. Thus, ⟨b⟩ = X ∩ ⟨b⟩ ≤ X. By De-
dekind Modular Law, X = ⟨au⟩⋉ ⟨b⟩ for some integer u. However, if
p divides u, then au ∈ Z(G), and X is abelian. It follows that p does
not divide u and hence ⟨au⟩ = ⟨a⟩. Therefore X = G, and G is minimal
non-abelian.

Finally, assume G = ⟨a⟩⋉
(
⟨b⟩ × ⟨c⟩

)
satisfies (3), let X be a non-

abelian subgroup of G, and note again that ap, bp ∈ Z(G). Since X is
non-abelian, so c belongs to X′ ≤ X. If X ∩ ⟨b, c⟩ ≤ Z(G), then X is
cyclic over the centre, which means that X is abelian, a contradiction.
Thus, X ∩ ⟨b, c⟩ ̸≤ Z(G) and consequently ⟨b, c⟩ = X ∩ ⟨b, c⟩ ≤ X be-
cause ⟨bp, c⟩ ≤ Z(G). As above, since X is non-abelian, so X cannot be
contained in ⟨ap, b, c⟩ and hence X = ⟨a, b, c⟩ = G.
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Remark 2.6. Note that if G is a minimal non-abelian group of type (3)
above, then the condition m + n > 2 whenever p = 2 guarantees that G′

is always a maximal cyclic subgroup of G, so G is not metacyclic in this
case. In fact, if p = 2 and g = aubvcz is any element of G such that
g2 ∈ ⟨c⟩, then gG′ has order 2, so 2 must divide either v or u because
of the condition m + n > 2, hence either au or bv are contained in Z(G),
and consequently g2 = a2ub2v, which means that g2 = 1. In case p is
odd, this follows from a straightforward application of Lemma 1.1.

Thus, the three cases in the statement of Theorem 2.5 can be labeled
as follows: the metacyclic case (1), the quaternion case (2) and the
non-metacyclic case (3). It follows that the alternatives in the statement
of Theorem 2.5 are non-isomorphic ones.

The following corollary of Theorem 2.5 shows how easy is to detect
minimal non-abelian subgroups in finite p-groups.

Corollary 2.7. Let G be a non-trivial finite p-group for some prime p. The
following conditions are equivalent:

(1) G is minimal non-abelian.

(2) G is 2-generator and |G′| = p.

(3) G is 2-generator and Z(G) = Frat(G).

Proof. It obviously follows from Theorem 2.5 that (1) implies both (2)
and (3).

Assume (2), write G = ⟨a, b⟩ and G′ = ⟨c⟩ for some a, b, c ∈ G.
Observe that ⟨[a, b]⟩ = G′ ≤ Z(G) because G′ is a chief factor of G,
so 1 = [a, b]p = [ap, b] = [a, bp] and hence ⟨ap, bp⟩ ≤ Z(G). Since G
is 2-generator and |G/Z(G)| = p2, so Z(G) = Frat(G). Therefore (2)
implies (3).

Assume (3), and note that G is not abelian because otherwise G =
Z(G) = Frat(G) = {1}. Let X be any proper subgroup of G. Since G
is 2-generator, so G/Z(G) is elementary abelian of order p2. Now, if
XZ(G) = G, then G = X Frat(G) = X, a contradiction. Thus XZ(G) <
G, so X is cyclic over its centre and hence is abelian. Therefore G is
minimal non-abelian and (3) implies (1).

Remark 2.8. We could have used the proof of Corollary 2.7 to prove
the sufficiency of the conditions in the statement of Theorem 2.7. In
fact, we could have proved both Theorem 2.5 and Corollary 2.7 at the
same time. However, we have preferred to split these two results so
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their statements could be more clear. Since we would have then used
the same argument twice, we have decided to prove the sufficiency
in Theorem 2.5 by a less abstract argument.

Obviously, every non-abelian finite p-group has minimal non-abelian
subgroups (take any subgroup that is minimal with respect to the
property of being non-abelian), and we end this section by showing
that in general there may be many minimal non-abelian subgroups.

Theorem 2.9. Let G be a locally finite p-group for some prime p. If G is not
abelian, then G is generated by its minimal non-abelian subgroups.

Proof. It is enough to prove the statement when G is finite. Let X be
the subgroup generated by all the minimal non-abelian subgroups of G,
and assume by contradiction that X < G. Clearly, X is normal in G,
and by induction on the order of G, we also have that X is maximal in
G, while every other maximal subgroup of G needs to be abelian.

Let a ∈ G \ X and write

G/ Frat(G) = C1/ Frat(G)× . . . × Ct/ Frat(G),

where Ci/ Frat(G) is a cyclic subgroup of order p for every i = 1, . . . , t,
and a ∈ C1. If t > 2, then a is contained in the two distinct maximal
subgroups M1 = C1 . . . Ct−1 and M2 = C1C3 . . . Ct. But M1 and M2 are
abelian and generate G, so a ∈ Z(G). Since G = ⟨G \ X⟩, so G is abelian,
a contradiction. Thus t = 2. Since Frat(G) is contained in the (abelian)
maximal subgroups C1 and C2 of G, so Frat(G) ≤ Z(G). Consequently,
X is cyclic over the centre and hence is abelian, a contradiction.

Corollary 2.10. Let G be a non-abelian locally finite p-group for some prime p.
If G is not minimal non-abelian, then G has at least two minimal non-abelian
subgroups.

2.2 the order is not a power of a prime

Theorem 2.11. Let G be a finite group whose order is not a prime power.
Then G is minimal non-abelian if and only if the following condition holds:

• G = Q ⋉ P, where Q and P are respectively a Sylow q-subgroup and
a Sylow p-subgroup of G for some distinct primes q and p. Moreover, Q
is cyclic, |Q/CQ(P)| = q, P = G′ is elementary abelian, and contains
no proper non-trivial G-invariant subgroup (so Q is a maximal subgroup
of G)
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Proof. First suppose that G is minimal non-abelian. It follows from Theo-
rem 2.1 that G is soluble, so G′ < G and there exists a maximal subgroup
M of G containing G′ and such that |G/M| = q is a prime. Let p be a
prime dividing |G| and distinct from q. If P is any Sylow p-subgroup
of G, then P ≤ M. But M is abelian and P is a Sylow p-subgroup of
M, so P is characteristic in M, and hence P ⊴ G. Now, if Q is any
Sylow q-subgroup of G, then G = QP = Q ⋉ P because Q ∩ P = {1}.
If Q is not cyclic, then ⟨g, P⟩ is abelian for every g ∈ Q, so P ≤ Z(G)
and G = Q × P; thus, both Q and P are abelian, so G is abelian too, a
contradiction. Therefore Q is cyclic and we can write Q = ⟨x⟩ for some
x ∈ G.

Now, by Theorem 1.9, we can write P = CP(Q)× [Q, P]. Since both
CP(Q) and [Q, P] are normalized by Q, they cannot be both non-trivial,
otherwise QCP(Q) and Q[Q, P] are abelian, so Q centralizes P and
[Q, P] = {1}, a contradiction. Thus, CP(Q) = {1} and P = [Q, P] = G′.
Finally, if P has a proper G-invariant subgroup L, then QL is abelian,
so L ≤ CP(Q) = {1}; in particular, P = Ω1(P) is elementary abelian.
The sufficiency of the statement is proved.

Assume conversely that the condition in the statement is satisfied,
so G = Q ⋉ P, where Q and P are respectively a Sylow q-subgroup and
a Sylow p-subgroup of G for some distinct primes q and p. If X is any
non-abelian subgroup of G, then X cannot be contained in the abelian
subgroup QqP, so the order of a Sylow q-subgroup of X equals the
order of a Sylow q-subgroup of G, and hence without loss of generality
we may assume Q ≤ X. Since Q ̸= X, so X ∩ P ̸= {1} by Dedekind Mo-
dular Law. But (X ∩ P)X = (X ∩ P)G and consequently (X ∩ P)X = P
because P has no non-trivial proper G-invariant subgroups. Thus,
X = G and G is minimal non-abelian.

Remark 2.12. No analogue of Theorem 2.9 is possible in case of arbitrary
finite groups. To see this, let G be the direct product of a copy S of the
symmetric group of order 3 and a cyclic group of order 5. Clearly, the
subgroup generated by all the minimal non-abelian subgroups of G is
S, so neither Theorem 2.9 nor its corollary hold in this case.
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In this chapter we deal with one of the broadest and most natural
generalizations of the class of minimal non-abelian groups: the class
of metahamiltonian groups. But before that, we are going to describe
a subclass of the class of metahamiltonian groups that is not only
relevant in dealing with arbitrary metahamiltonian groups, but it is
indeed extremely rich in abelian subgroups. The starting point is the
observation that every subgroup of an abelian group is normal, and
so it is reasonable to expect that a group in which every subgroup is
normal would somewhat resemble an abelian group. This kind of
groups has first been considered by Dedekind [6] in 1897, who proved
that they always contain a copy of the quaternion group of order 8 in
the non-abelian case — he called these groups Hamiltonian. A complete
description was later obtained by Baer [1] in 1933, but Dedekind already
came close to it in his original paper, and this is why groups (resp., non-
abelian groups) whose subgroups are normal are now termed Dedekind
groups (resp., Hamiltonian groups).

Theorem 3.1. Let G be a non-abelian group. Then G is Hamiltonian if
and only if G = Q × E × D, where Q is isomorphic to the quaternion
group of order 8, D is a periodic abelian 2′-group, and E is an elementary
abelian 2-group.

Proof. First suppose that all subgroups of G are normal. Since G is
non-abelian, so there are elements x, y ∈ G such that c = [x, y] ̸= 1.
Now, ⟨x⟩ are ⟨y⟩ are normal subgroups of G, so c ∈ ⟨x⟩ ∩ ⟨y⟩ and hence
c = xu = yv for some non-zero integers u and v — note that neither u
nor v can be 1, otherwise either ⟨x⟩ ≤ ⟨y⟩ or ⟨y⟩ ≤ ⟨x⟩, which means
that c = [x, y] = 1, a contradiction.

Let Q = ⟨x, y⟩. Clearly, c ∈ Z(Q), so Q′ = ⟨c⟩. Moreover,

cu = [x, y]u = [xu, y] = [c, y] = 1,

so Q′ is finite. But Q/Q′ is abelian and generated by the two periodic
elements xQ′ and yQ′, so Q/Q′ is finite, and hence Q is finite.

Since Q is finite, it is possible to choose x and y with minimum
o(x) + o(y). Let o(x) = m and o(y) = n. If p is any prime dividing m,

37
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then cp = [xp, y] = 1 by minimality of m + n, so c has prime order p.
The same argument actually shows that m and n are only divisible by
one prime p, so Q is a p-group.

Write u = kpr and v = ℓps with (k, p) = (ℓ, p) = 1 and r, s ∈ N, and
choose integers k′ and ℓ′ in such a way that kk′ ≡p ℓℓ′ ≡p 1. Put x′ = xℓ

′

and y′ = yk′ . Then [x′, y′] = ck′ℓ′ ̸= 1 because (k′, p) = (ℓ′, p) = 1, and

(x′)pr
= xℓ

′pr
=

(
xpr)ℓ′

= ck′ℓ′ =
(
yps)k′

= yk′ps
= (y′)ps

.

Replacing x by x′ and y by y′, we can consequently assume that xpr
=

c = yps
— note that m = pr+1 and n = ps+1. Also, without loss of

generality, we may assume r ≥ s ≥ 1.
Put y1 = x−pr−s

y. Then [x, y1] = [x, y] = c, so the minimality of
m + n yields that o(y1) ≥ o(y) = ps+1, which means that yps

1 ̸= 1. Now,
by Lemma 1.1,

yps

1 = x−pr
yps[

y, x−pr−s](ps
2 ) = cpr−s · ps(ps−1)

2 = c
pr(ps−1)

2 .

If p > 2, then yps

1 = 1, a contradiction. Thus, p = 2 and 2r−1(2s − 1) is
odd, so r = 1 and consequently s = 1. It follows that Q has order 8, so
Q ≃ Q8 by Lemma 2.4.

Let C = CG(Q) and suppose there is an element g ∈ G \ CQ. Then
either yg ̸= y or xg ̸= x. Without loss of generality, we may assume
yg ̸= y, so yg = y−1, and hence ygx = (y−1)x = y. Moreover, [gx, x] ̸= 1
otherwise gx ∈ C and g ∈ CQ, a contradiction, and gx ∈ G \ CQ. Thus,
replacing g by gx and y by x, we obtain that [gxy, x] = 1 by an argument
similar to the previous one. But (ygx)y = y and so gxy ∈ C, which
means that g belongs to CQ, a contradiction. Therefore G = CQ.

Let g be any element of C. Then [x, gy] = [x, y] ̸= 1, so gy is
periodic by the argument at the beginning of the proof. In particular, G
is periodic. Moreover, if o(g) = 4, then the minimality of o(x) + o(y)
yields that o(gy) = 4, so ⟨x, gy⟩ ≃ Q8 as above, and hence

gy−1 = gyx = (gy)x = (gy)−1 = g−1y−1.

Thus, g = g−1, and g has order 2, a contradiction.
Now, if C is non-abelian, then it must contain a copy of Q8 by what

we have proved so far, and so it would contain elements of order 4,
a contradiction. Thus, C is abelian. Let D and E1 respectively be
the Sylow 2′-subgroup and the Sylow 2-subgroup of C. We have that
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G = CQ = (QE1)× D. Since E1 is elementary abelian, so we can write
E1 = (Q ∩ E1)× E. Thus, G = Q × E × D.

Suppose conversely that G satisfies the conditions in the statement,
and let X be a subgroup of G. Clearly, X = (X ∩ QE)× (X ∩ D), so we
may assume that X ≤ QE because D is abelian and X ∩ D ⊴ G. Now,
if X ∩ G′ = {1}, then X ≃ XG′/G′ ≤ QE/G′ has exponent at most 2,
so X ≤ Ω1(G); but Ω1(G) ≤ Z(G), and hence X ⊴ G. On the other
hand, if X ∩ G′ ̸= {1}, then G′ = X ∩ G′ ≤ X because G′ has order 2,
and so X ⊴ G. In any case, X is normal in G and the statement is
proved.

Corollary 3.2. Every Dedekind group is nilpotent of class at most 2.

Now, a group is metahamiltonian if all its subgroups are either normal
or abelian. Obviously, this class of groups comprises all Dedekind
groups, all minimal non-abelian groups, and also all groups whose
derived subgroup has prime order. Metahamiltonian groups were
introduced in 1962 by Romalis [19] and their complete description (in
the soluble case) needed the joint work of many Russian mathematicians.
However, most of their papers are nowadays difficult to find and to
read, even if you know a bit of Russian. To make the matter worse,
some of those papers contain several, and sometimes serious, mistakes.
This is why we refer the interested reader to [3], where the structure of
soluble metahamiltonian groups is stated and proved in detail, putting
patches to all the mistakes in the literature. Unfortunately, as one can
see from [3], it would be a very lengthy (and boring) job even to state
all the structural results for soluble metahamiltonian groups. Thus,
we essentially content ourselves with proving that the commutator
subgroup of a locally graded metahamiltonian group is finite of prime
power order, a fact that is interesting in its own and does not require
lengthy and boring structural results (the definition of locally graded
group has been given in the previous chapter, just before Corollary 2.2).
In order to prove this theorem, we need some preliminary lemmas and
remarks.

Remark 3.3. The class of metahamiltonian groups is obviously closed
with respect to forming subgroups and homomorphic images. Also, if N
is any non-abelian subgroup of a metahamiltonian group G, then N ⊴ G
and G/N is Dedekind because every subgroup H of G containing N
is non-abelian and so normal in G — this fact will frequently be used
without further notice.
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Lemma 3.4. Let G be a metahamiltonian group. If G is residually finite, then
G is either nilpotent of class 2 or it is abelian-by-finite.

Proof. Suppose G is not abelian-by-finite, and let N be any finite-index
normal subgroup of G. Then every subgroup containing N is non-
abelian, so it must be normal in G. It follows that G/N is a Dedekind
group, so it is nilpotent of class at most 2 (see Corollary 3.2). Therefore
γ3(G) ≤ N. The arbitrariness of N yields that γ3(G) = {1}, so G is
nilpotent of class 2.

Lemma 3.5. Let G be a metahamiltonian group. Then every finitely generated
normal torsion-free abelian subgroup A of G is contained in Z(G).

Proof. Let x ∈ G. First suppose that A ∩ ⟨x⟩ = {1}. If for every prime p
there exists np ∈ N such that [Apnp , x] = {1}, then [A, x] = {1} because
A = Apnp Aqnq whenever p and q are distinct prime numbers. Thus, we
may assume that there is a prime r such that [Arn

, x] ̸= {1} for every
n ∈ N. It follows that ⟨x⟩Arn

/Arn
is a normal subgroup of G/Arn

for every n ∈ N, and hence [A, x] ≤ Arn
since A ∩ ⟨x⟩ = {1}. Now,

[A, x] ≤ ⋂
n∈N Arn

= {1} and we are done.
Assume now that ⟨xu⟩ = A ∩ ⟨x⟩ ̸= {1}, where u ∈ N. Then

A/⟨xu⟩ = T/⟨xu⟩ × B/⟨xu⟩, where T/⟨xu⟩ is finite and B/⟨xu⟩ is
torsion-free. Since ⟨xu⟩ ≤ Z(⟨x⟩A), so T ≤ Z(⟨x⟩A). In fact, if g ∈ T,
then there is ℓ ∈ N with gℓ ∈ ⟨xu⟩, and so 1 = [x, gℓ] = [x, g]ℓ, which
means [x, g] = 1 because A is torsion-free. Now, the case A ∩ ⟨x⟩ = {1}
shows that [A, x] ≤ T, so [A, x, x] = {1}. Consequently, [a, x]u = [a, xu] = 1
for all a ∈ A, and hence also [a, x] = 1. Thus, [A, x] = {1} and the
statement is proved.

Lemma 3.6. Let G be a metahamiltonian group. If G′ is finite, then G′ is
a p-group for some prime p.

Proof. Since G′ is finite, there exists a finitely generated subgroup E =
⟨x1, . . . , xn⟩ of G such that E′ = G′. Now, every element g of E has
finitely many conjugates in E, so |E : CE(g)| is finite. Consequently, the
index

∣∣E :
⋂

i=1,...,n CE(xi)
∣∣ is finite and hence E/Z(E) is finite because⋂

i=1,...,n CE(xi) ≤ Z(E). Since E is finitely generated, so is Z(E), and
hence Z(E) has a finite-index torsion-free abelian subgroup A. In order
to prove that G′ is a p-group for some prime p, it is therefore enough
to prove that E′A/A ≃ E′ = G′ is a p-group for some prime p. Thus,
replacing G by E/A, we can assume G is finite, and we may let G be a
minimal counterexample.
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Suppose there exists a prime q for which G has a non-trivial nor-
mal Sylow q-subgroup P. The Schur–Zassenhaus Theorem yields that
G = Q ⋉ P for some p′-subgroup Q. If Q is abelian, then G′ ≤ P, a
contradiction. Thus, Q is normal in G and so G = Q × P. Now, if P
is abelian, then G′ = Q′ is a q-group for some prime q by minimality
of G. We may therefore assume that both P and Q are non-abelian.
But then both P ≃ PQ/Q and Q ≃ QP/P are Hamiltonian, so their
derived subgroups have order 2, and hence G′ = P′ × Q′ has order 4, a
contradiction.

Assume there is no non-trivial normal Sylow q-subgroup of G for
any prime q. Note that if M is any non-trivial normal subgroup of G,
then G′M/M is a q-group for some prime q by minimality of G, so any
Sylow q-subgroup of G/M is normal; a similar argument holds for any
proper subgroup of G.

Suppose there exists a prime q and a Sylow q-subgroup Q such
that CG(Q) < NG(Q). Then ⟨g⟩Q is a non-abelian subgroup of G for
every g ∈ NG(Q) \ CG(Q), so ⟨g⟩Q ⊴ G; but Q is a normal Sylow q-sub-
group of ⟨g⟩Q and hence Q is normal in G, a contradiction. Thus,
CG(Q) = NG(Q) for every prime q and every Sylow q-subgroup Q; in
particular, every Sylow subgroup of G is abelian.

By Lemma 2.3 and Theorem 2.11, G cannot be minimal non-abelian,
so there is a proper non-abelian subgroup N, which is hence normal in
G. If N were nilpotent, then we could even assume it is of prime power
order, but then G/N would be nilpotent, and so G would have a non-
trivial normal Sylow subgroup. Thus, no proper non-abelian normal
subgroup can be nilpotent. Since we may also assume that N is minimal
non-abelian, so N = K ⋉ H, where K is a Sylow r-subgroup of N and
H is a Sylow s-subgroup for distinct primes r and s (see Theorem 2.11).
Now, C = CG(H) is a proper normal subgroup of G containing H.
Moreover, G/C is an s′-group. In fact, if S is any Sylow s-subgroup of
G, then H ≤ S because H is characteristic in N and so normal in G;
moreover S is abelian, so S ≤ C, but SC/C is a Sylow s-subgroup of
G/C, and hence G/C is an s′-group.

By minimality, C has a normal Sylow u-subgroup U for some pri-
me u, which is consequently normal in G. Clearly, if u = s, then U is
also a Sylow s-subgroup of G, and this is a contradiction. Thus, u ̸= s,
so in particular C cannot be abelian. Now, G/C is nilpotent and we
let V/C be the Sylow r′-subgroup of G/C. If V/C is non-trivial, then
H ≤ V′, so V has a normal Sylow s-subgroup, and hence also G has
a normal Sylow s-subgroup, a contradiction. Thus, V = C and G/C
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is an r-group. If u ̸= r, then U is a normal Sylow u-subgroup of G, a
contradiction. Consequently u = r.

Let R be any Sylow r-subgroup of G containing U, and let S
be a Sylow s-subgroup of G. By minimality, we have that SU ⊴ G
because HU/U ≤ G′/U. Thus, W = SR is a subgroup of G. If
S < CW(S) = NW(S), then CW(S) contains r-elements, which are then
contained in C and so in U. But the set of these r-elements is precisely
L = Z(SU) ∩ U, so by minimality SL/L is normal in G/L and hence S
is normal in G because S is characteristic in S× L. Therefore S = NW(S).
Consider W = W/CS(R). If RCS(R)/CS(R) is properly contained in
its normalizer in W, then RCS(R) = R × CS(R) is normalized by so-
me s-element of S, so R is normalized (and hence centralized) by the
same element, which means that this element is contained in CS(R).
Since S = NW(S), so S/CS(R) = NW

(
S/CS(R)

)
. Thus, all the Sylow

subgroups of W coincide with their normalizers, and hence we obtain a
contradiction by Theorem 1.11.

Remark 3.7. The main bulk of the proof of Lemma 3.6 could be avoided
by using a special case of a well-known p-nilpotency criterion due to
Burnside (see [18], 10.1.8). We leave the details as an exercise for the
reader.

Theorem 3.8. Let G be a locally graded metahamiltonian group. Then G is
soluble of derived length at most 3 and G′ is finite of prime power order.

Proof. Let M be the intersection of all non-abelian subgroups of G. Then
M is normal, being the intersection of normal subgroups of G, and all
proper subgroups of M (if any) are abelian. Thus, either M is abelian,
or it is minimal non-abelian and so soluble by Corollary 2.2. In any
case, M is soluble. If N is any non-abelian subgroup of G, then G′′ ≤ N
by Corollary 3.2. Thus G′′ ≤ M and G/M is soluble. It follows that G
is soluble.

Now, we prove that G′ is finite. By induction on the derived length
of G, we have that G′′ is finite, so we may assume that G is metabelian
(replacing G by G/G′′). If E is any non-abelian finitely generated
subgroup of G, then E is normal in G, and G′E/E has order at most 2
(see Theorem 3.1). Now, E is residually finite by Theorem 1.7, so it is
either nilpotent of class 2 or abelian-by-finite (see Lemma 3.4). In both
cases, E satisfies the maximal condition on subgroups, so not only E
but also all its subgroups are finitely generated. Thus, E ∩ G′ is finitely
generated and consequently G′ is finitely generated. Therefore, without
loss of generality we may assume that G is finitely generated.
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If G is abelian-by-finite, then G has a normal torsion-free abelian
subgroup A of finite index. By Lemma 3.5, A ≤ Z(G), so G′ is finite
by Schur’s Theorem. If G is not abelian-by-finite, then every normal
subgroup N of G of finite index is non-abelian, so G′N/N has order at
most 2 and hence (G′)2 ≤ N. Since G is residually finite by Theorem 1.7,
so (G′)2 = {1} and G′ has exponent at most 2. Thus, G′ is an elementary
abelian 2-group and actually a finite one, being finitely generated.
Therefore G′ is finite, and its order is a prime power by Lemma 3.6.

Finally, if G(3) ̸= {1}, then there are a, b ∈ G′′ with [a, b] ̸= 1.
Thus, G′/⟨a, b⟩ has order 2, so G′′ = ⟨a, b⟩. But G′ is nilpotent, and
hence also G′/ Frat(G) has order 2, which means that G′ is cyclic, a
contradiction. Therefore G(3) = {1} and the statement is proved.

Corollary 3.9. Let G be a locally graded metahamiltonian group. If G is not
periodic, then G′ is abelian.

Proof. By Theorem 3.8, G′ is a finite p-group for some prime p. If G′

is non-abelian and X is any non-abelian subgroup of G′, then X ⊴ G
and G/X is abelian by Theorem 3.1, being non-periodic. Thus G′ = X,
and G′ is minimal non-abelian. By Theorem 2.5, we can write G′ = ⟨a, b⟩
for some a, b ∈ G. Since G is non-periodic, so there exists an aperio-
dic element x ∈ CG(G′), because G/CG(G′) is finite. Put y = x8.
Clearly, ⟨ay, b⟩ is non-abelian, so G/⟨ay, b⟩ is Dedekind. On the other
hand, G/⟨ay, b⟩ contains elements of order 8 because x⟨a, b, y⟩ has order
8 in G/⟨a, b, y⟩. Thus, Theorem 3.1 shows that G/⟨ay, b⟩ is abelian, so
G′ ≤ ⟨ay, b⟩, and hence y ∈ ⟨ay, b⟩. This is impossible because y does
not belong to ⟨ay, b⟩.

There are many interesting results that would be at least worth
quoting about metahamiltonian groups. For example, if G is a finite me-
tahamiltonian p-group for some prime p, then G′ is either elementary
abelian of order p3, or it is isomorphic to Zpε × Zpn for some n ∈ N0
and ε ∈ {0, 1}. However, the following result is probably the mo-
st intriguing and the most useful one when it comes to work with
metahamiltonian groups

Theorem 3.10. Let G be a locally graded metahamiltonian group. Then every
non-abelian subgroup of G contains G′.

We wish to end this chapter by proving a result connecting fini-
te metahamiltonian and minimal non-abelian groups, and by briefly
describing the structure of non-soluble metahamiltonian groups.
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Theorem 3.11. Let p be a prime. If G is a locally finite metahamilto-
nian p-group and x ∈ G, then xG is either abelian or minimal non-abelian.

Proof. Suppose X = xG is non-abelian. Note that if H is a proper
subgroup of X such that xg ∈ H for some g ∈ G, then H is abelian,
because otherwise xG ≤ H ⊴ G. Thus, if xg is a conjugate of x such
that [x, xg] ̸= 1, then X = ⟨x, xg⟩.

Now, since X is non-abelian, so there are conjugates xg1 and xg of X
such that [xg1 , xg] ̸= 1 — conjugating G by g−1

1 , we may assume g1 = 1.
Clearly, ⟨x⟩X′ and ⟨xg⟩X′ are proper subgroups of X, so they are
abelian, and hence X′ ≤ Z(X) because X = ⟨x, xg⟩. Let n be the largest
positive integer such that ⟨x, y⟩ is non-abelian, where y = (xg)pn

— of
course, X = ⟨x, y⟩ by the remark above. Then 1 = [x, yp] = [x, y]p,
so X′ = ⟨[x, y]⟩ has order p, and hence X is minimal non-abelian
by Corollary 2.7.

Lemma 3.12. Let G = H ×K be a direct product of two copies H and K of Q8.
If X is a subgroup of G such that |X′| = 4, then X is not metahamiltonian.

Proof. Suppose that X is metahamiltonian, and write H = ⟨a, b⟩ and K = ⟨c, d⟩
for some elements a, b, c, d ∈ G. Since ⟨ac, bd⟩ ≃ Q8 is not normal in
G, so X < G. Moreover, every 2-generator subgroup of G has a cyclic
commutator subgroup. Thus X is generated by 3 elements and not less
than 3. If X contains H, then we easily see that K ≤ X, so X = G, a
contradiction — a similar contradiction can be found if X contains K.
Thus, X does not contain H nor K.

Let {x, y, z} be a set of generators of X. Since X contains G′, we
can always assume that x = a, and that y = bc. Consequently, we may
assume z = du, where u = b or u = 1. If u = b, then we can replace z
by cd, which means that we may actually assume z = d also in this case
(recall that the roles of the cyclic subgroups of order 4 in Q8 are inter-
changeable). Thus, without loss of generality, we have X = ⟨a, bc, d⟩.
Now X = ⟨bc⟩

(
⟨a⟩ × ⟨d⟩

)
, ⟨a⟩ ⊴ G, ⟨d⟩ ⊴ G, and ⟨bc⟩ ∩ ⟨a, d⟩ = ⟨(bc)2⟩.

Now, ⟨bc, ad⟩ is non-abelian so is normal in X, but this is impossible
because ⟨bc, ad⟩ has trivial intersection with ⟨d⟩, so X = ⟨bc, ad⟩ × ⟨d⟩
and hence X′ is cyclic, the last contradiction.

Theorem 3.13. Let G be a non-soluble group. Then G is metahamiltonian if
and only if there is an infinite minimal non-abelian subgroup M of G′ that is
contained in every non-abelian subgroup of G, and G/M is Dedekind.

Proof. Since the sufficiency is obvious, we only have to deal with the ne-
cessity. Assume therefore that G is metahamiltonian. If G′ is finite, then
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G is locally graded and so soluble by Theorem 3.8, a contradiction. Thus,
G′ is infinite and clearly non-abelian. Now, let M be the intersection
of all the non-abelian subgroups of G; in particular, M ≤ G′. Clearly,
G′/M has exponent at most 2 because it is residually of exponent 2,
so G′/M is elementary abelian. If G′/M does not have order 2, then
there are non-abelian subgroups N1 and N2 of G such that G/(N1 ∩ N2)
has a non-cyclic derived subgroup. Since G/(N1 ∩ N2) is isomorphic
to a subgroup of G/N1 × G/N2, and G/Ni is Dedekind for i = 1, 2, so
there exists a homomorphic image of G that is isomorphic to a sub-
group X of Q8 × Q8 such that |X′| = 4, which is impossible by Lemma
3.12. Therefore G′/M is cyclic of order at most 2, and M is infinite
non-abelian. In particular, G/M is Dedekind, and the statement is
proved.





4
J U S T N O N - A B E L I A N G R O U P S

In this final chapter, we study just non-abelian groups, that is, non-
abelian groups G such that G/N is abelian for every non-trivial normal
subgroup N of G. These groups can be considered as duals of the
minimal non-abelian groups, but here the situation is much more com-
plex even in the finite case because there exist “large” groups with
very few non-trivial normal subgroups (for example, the non-abelian
simple groups). Just non-abelian groups have first been considered
by B.H. Neumann [12] in 1956, and were later studied (in the soluble
case) by Newman [13],[14] in 1959 — note that in this context “soluble”
obviously implies “metabelian”. In [13], Newman considered metabe-
lian just non-abelian groups with trivial centre, while in [14], he studied
the case in which the centre is non-trivial (so these groups are nilpotent
of class 2). It is proved in [13] that metabelian just non-abelian groups
with trivial centre can be completely characterized as natural semidirect
products involving fields, while it is proved in [14] that a necessary and
sufficient condition for a nilpotent group G to be just non-abelian is
that there exists a prime p such that |G′| = p and Z(G) is either a cyclic
or a Prüfer p-group. However, since the complete characterization of
the nilpotent case is a bit too complex, and so outside the scope of this
chapter, we are just going to present here the former work of Newman
in the case of soluble just non-abelian groups with trivial centre.

Let’s start by giving examples of soluble just non-abelian groups. Of
course, for every prime p, a group of order p3 is just non-abelian (and
nilpotent). On the other hand, the symmetric group of degree 3 and the
alternating group of degree 4 are just non-abelian with a trivial centre.
More sophisticated examples can be constructed as follows. Let K be a
field, and let Λ be a non-trivial subgroup of the multiplicative group K×

of K \ {0}. Now, let GΛ,K = (Λ, ·)⋉ (K,+) be the natural semidirect
product of (K,+) by (Λ, ·), where the action is by field multiplication.
Clearly, GK has a trivial centre and is metabelian.

Remark 4.1. GΛ,K is evidently isomorphic to the group of linear inho-
mogeneous substitutions

x 7→ λx + ω,

where λ ranges in Λ and ω in K.

47
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Remark 4.2. In dealing with GΛ,K, we are always going to consi-
der (Λ, ·) and (K,+) as the obvious subgroups of GΛ,K, so they are set
of pairs. If we do not wish to consider them as such, then we simply
write Λ and K.

Theorem 4.3. The group G = GΛ,K is just non-abelian if and only if the
subgroup generated by Λ in (K,+) is K.

Proof. Let S = ⟨(1, λ) : λ ∈ Λ⟩ ≤ (K,+). Clearly, S is a normal
subgroup of G, and the condition in the statement can simply be
rephrased by saying that S = (K,+) as subgroups of G.

First, suppose that G is just non-abelian. For every λ ∈ Λ,

(1,−1) · (1, 1)(λ,0) = (1, λ − 1) ∈ S.

If (1, x) ∈ (K,+) and 1 ̸= λ ∈ Λ, then (1, xλ) = (1, x) modulo S,
so

(
1, x(λ − 1)

)
∈ S. Since (1, λ − 1) ∈ S, then S = (K,+) by the

arbitrariness of x.
Assume conversely that S = (K,+), and let (λ, ν) be a non-trivial

element of G. We claim that the normal closure N of ⟨(λ, ν)⟩ in G
contains (K,+). If λ ̸= 1, then[

(1, ω(λ − 1)−1), (λ, ν)
]
= (1, ω) ∈ N

for every ω ∈ K. Assume λ = 1, and let ω ∈ K. Since S = (K,+),
so ν−1(ν + ω) = ∑n

i=1 λi for some elements λi ∈ Λ. Put

c =
n

∏
i=1

(1, ν)(λi ,0) =
(

1, ν ·
n

∑
i=1

λi

)
= (1, ν + ω).

Then (1, ν)−1c = (1, ω) ∈ N. In any case, G/N is abelian and the
statement is proved.

Corollary 4.4. The group GK× ,K is a metabelian just non-abelian group with
trivial centre.

The main result of [13] shows that every metabelian just non-abelian
group with trivial centre is isomorphic to a group GΛ,K for some
field K and some subgroup Λ of K× — it is precisely this result that
we are going to prove, but first we need some preliminary remarks and
lemmas.

Remark 4.5. If G is a metabelian just non-abelian group, then G′ has
no non-trivial proper characteristic subgroups. In fact, if X is such a
subgroup, then X ⊴ G and G/X is abelian, which means that G′ ≤ X,
a contradiction. In particular, G′ is either periodic or torsion-free.
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Lemma 4.6. Let G be a metabelian just non-abelian group. Then G′ is either
an elementary abelian p-group for some p, or it is a direct product of copies of
the additive group of the rational numbers.

Proof. First, suppose that there exists a prime p such that (G′)p = {1}.
In this case, G′ has exponent p and so is elementary abelian. Thus,
we may assume that (G′)q ̸= {1} for every prime q. Now, Remark 4.5
yields that G′ = (G′)q for every prime q, which means that G′ is
divisible. Therefore G′ is either a direct product of Prüfer groups or
it is a direct product of copies of the additive group of the rational
numbers. However, in the former case, the subgroup generated by all
the elements of prime order is proper and non-trivial, contradicting Re-
mark 4.5. Thus, G′ is a direct product of copies of (Q,+) and we are
done.

Remark 4.7. All the possibilities expressed in the statement of the
previous lemma for the derived subgroup of a metabelian just non-
abelian group can actually be realized, except for the cyclic group of
order 2. To see this, you just need to take into account the groups GK
constructed above, and to notice that a derived subgroup of order 2
implies that the group is nilpotent.

Lemma 4.8. Let G be a group. If N is any subgroup of G such that G′ ≤
N ≤ CG(G′), then CG(x) ∩ N and [x, N] are normal subgroups of G for
every x ∈ G. Moreover, [x, N] = {[x, u] : u ∈ N}.

Proof. Let g ∈ G and a ∈ CG(x) ∩ N. Then

[x, ag] = [x, g−1ag] = [x, ag][x, g−1]ag = [x, g][x, g−1]ag.

But a belongs to CG(G′), and hence

[x, g][x, g−1]ag = [x, g][x, g−1]g = [x, gg−1] = 1.

Thus, ag ∈ CG(x). Since obviously ag ∈ N, so CG(x) ∩ N ⊴ G.
Now, if u, v ∈ N, then

[x, uv−1] = [x, u][x, v−1]u = [x, u][x, v−1] = [x, u][x, v]−1

because N ≤ CG(G′). Thus, [x, N] is the set of all commutators [x, u]
for u ∈ N. Finally, if g ∈ G and a ∈ N, then

[x, a]g = [xg, ag] =
[
[g, x−1]x, ag] = [x, ag]

because G′ ≤ N and ag centralizes G′. Therefore [x, N] ⊴ G and the
statement is proved.
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Let G be a group. The maps

φx : a ∈ G′ 7→ [x, a] ∈ G′,

where x ∈ G, will play a crucial role from now on.

Lemma 4.9. Let G be a metabelian just non-abelian group with trivial centre.
If x ∈ G \ CG(G′), then the map φx is an automorphism, and G = CG(x)⋉
G′.

Proof. The map φx is easily seen to be a homomorphism. Now, Lem-
ma 4.8 yields that

Ker(φx) = CG′(x) = CG(x) ∩ G′ and (G′)φx = [x, G′]

are normal subgroups of G. Since [x, G′] ̸= {1}, so [x, G′] = G′

and Ker(φx) = {1}. Thus, for every g ∈ G,
(
[x, g]−1)φ−1

x is the only
element a of G′ such that [x, g][x, a] = 1. But the previous equality
means that [x, ga] = 1, so ga is the unique element of gG′ centralizing x.
Therefore G = CG(x) · G′ and CG′(x) = {1}.

Lemma 4.10. Let G be a metabelian just non-abelian group with trivial centre.
Then G′ = CG(G′).

Proof. Let x ∈ G \ CG(G′). The map

ψ : z ∈ CG(G′) 7→ [x, z] ∈ G′

is a homomorphism. By Lemma 4.8, the image of ψ is a normal sub-
group of G, so ψ is surjective. By the same lemma, also the kernel K of
ψ is normal in G, so if K ̸= {1}, then G′ ≤ K. On the other hand, G′ is
not contained in K because x /∈ CG(G′), so K = {1} and hence ψ is an
isomorphism. Now, the restriction of ψ to G′ is also an isomorphism by
Lemma 4.9, and hence G′ = CG(G′).

Lemma 4.11. Let G be a metabelian just non-abelian group with trivial
centre. The complements of G′ in G are precisely the centralizers of elements
x ∈ G \ CG(G′). Moreover, every such complement coincides with its own
centralizer in G.

Proof. Write G = C ⋉ G′ for some subgroup C of G. Then C ≃ G/G′ is
abelian, so for all 1 ̸= c ∈ C, we have that CG(c) ≥ C. Now, c ̸∈CG(G′),
so CG(c) is a complement of G′ in G by Lemma 4.9. Since

CG(c) = CG′ ∩ CG(c) = C
(
G′ ∩ CG(c)

)
= C · CG′(c),
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it follows that CG′(c) = {1} (recall that CG(c) is a complement of G′)
and hence CG(c) = C. This shows at once that every complement of G′

in G is a centralizer in G of an element outside CG(G′), and that these
complements coincide with their own centralizer in G.

Lemma 4.12. Let G be a metabelian just non-abelian group with trivial centre.
The complements of G′ in G are maximal subgroups of G.

Proof. Clearly, every subgroup D of G containing a complement C of G′

in G is such that D ∩ G′ is normal in G = CG′. On the other hand,
G′ has no non-trivial proper G-invariant subgroups and hence every
complement of G′ in G is a maximal subgroup of G.

Lemma 4.13. Let G be a metabelian just non-abelian group with trivial centre.
There exists a bijection between the elements of G′ and the complements of G′

in G.

Proof. Let x ∈ G \ CG(G′). We claim that the assignation u 7→ CG(x)u

defines a bijection τ of G′ onto the set of complements of G′ in G.
If y ∈ G \CG(G′), then φx and φy are automorphisms by Lemma 4.9.

Also, the inversion ψ is an automorphism of G′, so the composition
φx ◦ φy ◦ ψ is an automorphism as well. Thus, there exists an element
g ∈ G′ such that [x, g, y] = [y, x]. Now,

[xg, y] =
[
x[x, g], y

]
= [x, y][x, g, y] = [x, y][y, x] = 1,

so xg ∈ CG(y). If z ∈ CG(x), then [zg, xg] = 1, so

[y, zg, xg] = [xg, y, z][y, zg, xg][zg, xg, y] = 1

by Lemma 1.2. On the other hand, the map φxg ◦ ψ is an automorphism
of G′, and hence [y, zg] = 1, which means that zg ∈ CG(y). Therefore
CG(x)g ≤ CG(y), and by maximality CG(x)g = CG(y) (see Lemma 4.12).
Thus, τ is surjective.

If CG(x)g1 = CG(x)g2 for some g1, g2 ∈ G′, then g1g−1
2 is an element

of G′ normalizing CG(x). But G = CG(x)⋉ G′, and hence g1g−1
2 centra-

lizes CG(x). Thus, g1 = g2 by Lemma 4.11. Therefore τ is injective and
the statement is proved.

Let G be a metabelian just non-abelian group with trivial centre.
We need to associate a field to G. For each g ∈ G, let g be the inner
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automorphism of G induced by g. Clearly, the restriction of g to G′

defines an automorphism gµ′
of G′, and the map

µ′ : g ∈ G 7→ gµ′ ∈ Aut(G′)

is a homomorphism. Since G′ = CG(G′) by Lemma 4.10, so Ker(µ′)=G′.
Let ΘG = Θ be the subring of the endomorphism ring of G′ generated
by ΓG = Gµ′

, and note that Θ is a commutative ring.

Remark 4.14. Since Gµ′
is a group, so Θ is the additive closure of Gµ′

.

Now, G′ can, in a natural way, be regarded as a simple Θ-module
(see Remark 4.5) — that is, G′ has no non-trivial proper Θ-submodule.
Using Remark 4.14, we easily see that G′ is a faithful Θ-module, that is,
for every 0 ̸= θ ∈ Θ, there exists x ∈ G′ such that xθ ̸= 1.

Lemma 4.15. (Θ,+, ◦) is a field.

Proof. We only need to show that every element of Θ has a multiplicati-
ve inverse. The set S of all elements g of G′ with gθ = 1 for all θ ∈ Θ is
a proper Θ-submodule of G′ (because G′ is a faithful Θ-module), so S
is trivial. Thus, if 1 ̸= x ∈ G′, then xΘ = {xθ : θ ∈ Θ} is a non-trivial
Θ-submodule of G′, so xΘ = G′. Choose τ ∈ Θ such that xτ = 1. Then

1 = xτ◦Θ = {xτ◦θ : θ ∈ Θ} =
(
xΘ)τ

= (G′)τ ,

so τ = 0.
Now, if α, β ∈ Θ with α ̸= 0, then xα ̸= 1 and so(

xα
)Θ

= G′.

Then there exists γ ∈ Θ such that
(

xα
)γ

= x. Thus, xα◦γ−1 = 1 and
consequently α ◦ γ = 1, which means that α is invertible.

Remark 4.16. Let K be a field and Λ a subgroup of K× such that the
subgroup generated by Λ in (K,+) is K. Then ΘGΛ,K ≃ K.

Remark 4.17. If C is any complement of G′ in G, then the restric-
tion µG,C of µ′ to C is an isomorphism of C and Gµ′

. Since Gµ′
is a

multiplicative subgroup of the field Θ, so C is isomorphic to a multi-
plicative subgroup of Θ. In particular, the periodic subgroups of C are
locally cyclic.
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Let 1 ̸= x ∈ G′. For every g ∈ G there exists θg ∈ Θ such that
g = xθg . It easily follows that the map

αG,x = α : g ∈ G′ 7→ θg ∈ (Θ,+)

is an isomorphism. Now, if C is any complement of G′ in G, g ∈ G′ and
a ∈ C, then

(ga)α = gα ◦ aµG,C

because xθg◦ aµG,C
= ga.

Theorem 4.18. Let G1 and G2 be metabelian just non-abelian groups with
trivial centre. Then G1 ≃ G2 if and only if there exists a field isomorphism
φ : ΘG1 → ΘG2 such that

(
ΓG1

)φ
= ΓG2 .

Proof. Since the necessity is obvious, we may assume that there exists
a field isomorphism φ : ΘG1 → ΘG2 such that

(
ΓG1

)φ
= ΓG2 . Write

G1 = C1 ⋉ G′
1 and G2 = C2 ⋉ G′

2 for some subgroups C1 and C2 of G
(see Lemma 4.9). Let 1 ̸= x1 ∈ G′

1, 1 ̸= x2 ∈ G′
2 and put

ψ = µG1 ,C1 ◦ φ ◦ µ−1
G2 ,C2

and τ = αG1 ,x1 ◦ φ ◦ α−1
G2 ,x2

.

Then ψ : C1 → C2 and τ : G′
1 → G′

2 are isomorphisms, and the
assignation

(c, g)π = (cψ, gτ), c ∈ C1, g ∈ G′
1

defines an isomorphism of G1 onto G2.

Theorem 4.19. Let G be a metabelian just non-abelian group with trivial
centre. Then G ≃ GΓG ,ΘG .

Proof. Write G = C ⋉ G′ for some subgroup C of G (see Lemma 4.9),
and fix a non-trivial element x of G′. Let

τ : G → GΓG ,ΘG

be the function mapping every element g = au of G, with a ∈ C and
u ∈ G′, to the pair

(
aµG,C , uαG,x

)
∈ GΓG ,ΘG . This function is well-defined

because of the properties of the semidirect product. Since the functions
µG,C and αG,x are bijective, so is τ. Also,

(g1g2)
τ =

(
(a1a2)

µG,C , (ua2
1 + u2)

αG,x
)

=
(
(a1a2)

µG,C ,
(
uαG,x

1
)
◦ aµG,C

2 + uαG,x
2

)
=

(
aµG,C

1 , uαG,x
1

)
·
(
aµG,C

2 , uαG,x
2

)
= gτ

1 · gτ
2 ,
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for all g1 = a1u1 and g2 = a2u2 with a1, a2 ∈ C and u1, u2 ∈ G′.
Therefore τ is an isomorphism and the statement is proved.

Corollary 4.20. There exist 2ℵ0 non-isomorphic metabelian just non-abelian
groups G with trivial centre such that the field ΘG is isomorphic to the field of
rational numbers.

Proof. Write P = (pi)i∈N, and for each i ∈ N, choose a positive inte-
ger λi. Let (Λ, ·) be the subgroup of (Q, ·) generated by the numbers
pλi

i , and let (S,+) be the subgroup generated by Λ in (Q,+) — note
that Λ (and consequently S) should be considered as a function of the
sequence {λn}n∈N.

Now, let p be a prime, and choose i ∈ N such that p = pi. For each
positive integer ℓ, the number 1/p−ℓλi belongs to Λ, and hence to S.
Since the Sylow p-subgroup of (Q,+)/(S,+) is generated by the cosets
1/p−ℓλi + S, for ℓ ∈ N, so the Sylow p-subgroup of (Q,+)/(S,+) is
trivial. It follows that (Q,+) = (S,+). Therefore GΛ,Q is a metabelian
just non-abelian group with trivial centre by Theorem 4.3.

Finally, since the identity automorphism is the only automorphism
of the field of rational numbers, it follows that different choices for the
sequence {λn}n∈N give non-isomorphic groups GΛ,Q. The statement is
proved (see also Remark 4.16).

The above characterization of metabelian just non-abelian groups
with trivial centre allows us to give a more group-theoretic descrip-
tion of such groups in the finite case, but first we need some general
preliminary observations about fields.

Let K be a field of characteristic q ≥ 0, and let (Λ, ·) be a subgroup
of (K×, ·). For every 0 ̸= ω ∈ K, we let dΛ be the minimal number of
generators of the subgroup

T(ω, Λ) = ⟨ωλ : λ ∈ Λ⟩

of (K,+). It is easy to see that dΛ is independent of ω. In fact, if ω1, ω2
are non-zero elements of K, then there exists ν ∈ K such that ω1ν = ω2.
Since ν ̸= 0, the multiplication by ν induces an isomorphism of (K,+)
under which the subgroups T(ω1, Λ) and T(ω2, Λ) correspond. Thus,
the minimal number of generators of T(ω1, Λ) is the same as that of
T(ω2, Λ), and dΛ is independent of ω.

Lemma 4.21. Let K be a field of characteristic q ≥ 0, and (Λ, ·) a non-trivial
subgroup of (K×, ·) of order n.
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• If q = 0, then dΛ = ϕ(n).

• If q > 0, then dΛ is the smallest positive integer k such that n divides
qk − 1.

Proof. Since (Λ, ·) is a finite subgroup of the multiplicative group of
a field, so Λ is cyclic. Let λ be a generator of (Λ, ·), put d = dΛ, and
let E = E(K) be the prime field of K.

Let 0 ̸= ω ∈ K, and let k be the smallest non-negative integer for
which ω, ωλ, . . . , ωλk is E -linearly dependent. Clearly, k ≥ 1. If k < d,
then ωλk can be written as an E -linear combination of the elements
ω, . . . , ωλk−1, and such is every ωλℓ for ℓ ≥ k. Now, if q > 0, then
ω, . . . , ωλk−1 is a set of generators of T(ω, Λ), contradicting the mini-
mality of d. On the other hand, if q = 0, then the subgroup S of (K,+)
generated by the elements ω, . . . , ωλk−1 has finite index in T(ω, Λ);
this shows again that the minimal number of generators of T(ω, Λ) is
at most k − 1 < d, a contradiction. Therefore k = d, so we can write

ωλd =
d−1

∑
i=0

πiωλi ,

where πi ∈ E for every i = 1, . . . , d − 1.
Consider the polynomial

f (x) ≡ xd −
d−1

∑
i=0

πixi.

We claim that this polynomial is irreducible over E . In fact, suppose
that f (x) = g(x) · h(x), where g(x) and h(x) are polynomials on E ,
and h(x) is irreducible. Put ψ = ω · g(λ). By minimality of d, we have
that ψ ̸= 0, while obviously ψ · h(λ) = f (λ) = 0. Then the minimal
number of generators of T(ψ, Λ) is at most the degree of h(x), which
means that h(x) has degree d, and so that g(x) has degree 0. The claim
is proved.

Therefore d is the degree of an irreducible polynomial of a primi-
tive nth root of unity (which is λ) over a prime field, and the result
follows from Theorem 1.5.

Theorem 4.22. Let p be a prime and let K be a finite field of order pk,
where k ∈ N. Let (Λ, ·) be a non-trivial subgroup of (K, ·) of order n. Then
GΛ,K is just non-abelian if and only if k is the smallest positive integer h such
that n divides ph − 1.
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Proof. It follows from Theorem 4.3 that GΛ,K is just non-abelian if and
only if dΛ = k. By Lemma 4.21, the latter condition is equivalent to
requiring that n divides pk − 1 but not ph − 1 for any positive integer
h < k. The statement is proved.

Theorem 4.23. A finite metabelian just non-abelian group G with trivial
centre is extension of an elementary abelian p-group of order pk (p a prime),
by an automorphism of order n, where n divides pk − 1 but not ph − 1 for any
positive integer h < k.

Proof. This follows at once from Theorems 4.19 and 4.22.

Thus, finite metabelian just non-abelian groups with trivial centre
can be characterized by two invariants: a prime-power pk, not equal to 2
(see Remark 4.7), and an integer n which divides pk − 1 but not ph − 1
for all positive integers h < k. In fact, for each such a pair (pk , n), there
always exists a finite metabelian just non-abelian group with trivial
centre having these invariants: it is enough to consider the group GΛ,K,
where K is the field of order pk and Λ is the subgroup of (K, ·) of order
n (see Theorem 4.22) — also, by Theorem 4.18, this is the only such a
group up to isomorphisms.
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