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Replication of the UK inflation model by Hendry (2001)
using BACE approach

Marcin Błażejowski∗ , PawełKufel∗∗ , Jacek Kwiatkowski∗∗∗

Abstract: In this paper, we revisit the well-known UK inflation model by Hendry (Journal

of Applied Econometrics 2001, 16:255-275. doi: 10.1002/jae.615). We replicate the results

in a narrow sense using the gretl and PcGive programs. In a wide sense, we extend the study

of model uncertainty using the Bayesian averaging of classical estimates (BACE) approach

to compare model reduction strategies. Allowing for the investigation of other specifications,

we confirm the same set of significant determinants but find that Hendrys’ model is not the

most probable.

Keywords: BACE, gretl, Model uncertainty, Reduction strategy

1. Introduction

This paper concerns a replication of a model of UK inflation, 1875-1991,
by Hendry (2001) based on data provided by JAE services at (http://qed.
econ.queensu.ca/jae/2001-v16.3/hendry). To replicate Hendrys’ pro-
cedure for modeling inflation in the UK in a narrow sense, we used the gretl

and PcGive/Autometrics. Our extension, in a wide sense, of Hendrys’ work
employed the Bayesian averaging of classical estimates (BACE) approach
proposed by Sala-i-Martin et al. (2004) to compare model reduction strategies
and the variable selection procedure.

When we consider the large number of variables, it is difficult to decide
which model is the most appropriate for analyzing the dependencies, i.e., to
find the optimal set of variables in terms of goodness of fit measures. Using
BACE, we can obtain the most probable set of determinants along with pos-
terior parameter estimates based on the whole model space instead of making
decisions based only on a single model. This approach is an alternative to the
∗WSB University in Torun, Poland, marcin.blazejowski@wsb.torun.pl
∗∗WSB University in Torun, Poland, pawel.kufel@wsb.torun.pl
∗∗∗Nicolaus Copernicus University in Torun, Poland, jkwiat@uni.torun.pl
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earlier and familiar Bayesian model averaging (BMA) (see Fernandez et al.
2001; Ley et al. 2012), from which it differs, first of all, by having less re-
strictive prior assumptions of parameters. Sala-i-Martin et al. (2004) showed
that the BMA approach may be understood as limiting case of Bayesian ana-
lysis in the situation where prior information is ”dominated” by the data. The
parameter estimates are averaged across all possible combinations of models
obtained by means of OLS. In our case, the BACE analysis was performed in
the BACE 1.1 package (see Błażejowski et al. 2018).

2. Data

In our paper and replication files, we used the same data definitions as in
Hendry (2001) with the following exceptions:

1. Profit markup (π∗t ) was taken directly from the jaedfh4.dat file (part
of the dfhdata.zip archive); this variable exists as ”pistarn” in the
JAE archive.

2. Short-long spread (Rs,t −Rl,t + 0.006) was named St, similar to Clements
at al (2008).

3. Excess demand
(
ydt
)

was taken directly from the jaedfhm.dat file
(part of the dfhdata.zip archive); this variable exists as ”gdpd” in
the JAE archive.

4. The real exchange rate was defined as er,t = pt−p£,t−0.52. We found
an inaccuracy in the paper by Hendry (2001) and data definitions in the
JAE archive. The calculation of er,t = pt − p£,t + 0.52 (equation (3)
in Hendry (2001)) is misleading with the form of calculating er,t in the
formula for ”pistarn” (readme.h.txt file) and refers to subtracting
(not adding) the intercept value (0.52).

5. According to formulas in the JAE archive (readme.h.txt file), the
variable Unit labor costs in constant prices was defined as c∗t = ct −
pt + 0.006 × (trend − 69.5) + 2.37. This exception was due to an in-
consistency between the JAE archive and Hendrys’ paper, where it was
defined as c∗t = (ct − pt)∗.

2
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3. Research scenario

To replicate the Hendry (2001) results in a narrow sense, we proceed as fol-
lows. In the case of the initial model for all 52 variables, we received identical
output to that in the original model (Model: GUM52; residual standard devia-
tion σ̂ = 1.21%, Schwartz Criterion SC = −7.3). After excluding indicators
from the initial model, we also received exact results (Model: GUMnoIndi-

cators; σ̂ = 2.5%, SC = −6.63). In the next step, we added dummy vari-
ables Ib, Il, Im concerning outliers in particular years to
(Model: GUMnoIndicators), and we obtained the same results as in the pa-
per (Model: GUMfirst Reduction; σ̂ = 1.16%, SC = −8.08). In the
next step, the dummy variables Ib, Il, Im were substituted by one overall in-
dex, Id, and once again, we obtained the same results (Model: GUMsecon-

dReduction; σ̂ = 1.15%, SC = −8.16). Finally, we expressed the general
model in terms of π∗t−1 with indicators restricted to Id (Model: GUMfinal;
σ̂ = 1.15%, SC = −8.33). At this point, we had the following specification:

∆pt = f(∆pt−1, y
d
t−1,m

d
t−1, n

d
t−1, U

d
t−1, St−1, Rl,t−1,∆pe,t,∆pe,t−1,∆Ur,t−1,

∆wt−1,∆ct−1,∆mt−1,∆nt−1,∆Rs,t−1,∆Rl,t−1,∆po,t−1, Id,t, π
∗
t−1; εt)

(1)

After the reduction of model (1) at a 1% significance level, we obtained
model (6) in Hendry (2001) and (Model: FinalModel; σ̂ = 1.14%,

SC = −8.66) in our notation. Detailed results are available in the Table 1.
According to results in Table 1, we found minor differences in the coefficient
estimates for four variables—ydt−1, ∆mt−1, ∆Rs,t−1, and ∆pt−1—and two
differences in standard errors for St−1 and ∆pt−1. The remaining coefficients
and the model statistics were identical.

In his paper, Hendry used the PcGets automatic model selection proce-
dure with a 1% significance level for the model (1) to check the correctness
of the simplification. We repeated this automatic model selection procedure
using Autometrics for model (1), and we obtained exactly the same estimates
as in Model: GUMfinal in gretl (i.e., with slight differences compared to
model (6) in Hendrys’ paper). We suppose that these differences are due to

3
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Table 1. Comparison of Hendrys’ and the replication results

Hendry (2001) Replication

ydt−1 0.180
(0.032)

0.184
(0.032)

∆mt−1 0.187
(0.028)

0.182
(0.028)

St−1 −0.834
(0.088)

−0.834
(0.087)

∆Rs,t−1 0.618
(0.106)

0.619
(0.106)

π∗t−1 −0.186
(0.024)

−0.186
(0.024)

∆pe,t 0.265
(0.025)

0.265
(0.025)

Id,t 0.038
(0.002)

0.038
(0.002)

∆po,t−1 0.041
(0.010)

0.041
(0.010)

∆pt−1 0.267
(0.027)

0.268
(0.026)

R2 0.975 0.975
σ̂ 1.14% 1.14%
SC −8.66 −8.66

diverse computer architectures (64 bit and 32 bit).

4. BACE results

To verify the correctness of Hendrys’ variable selection strategy, we used
the BACE approach (replication in a wide sense). This procedure enables
searching the whole model space and selecting the most probable regressions.
The BACE analysis was performed for the set of k = 20 variables (including
the intercept) defined in Model: GUMfinal (model (1)), and so the total num-
ber of possible models was 2k = 1, 048, 576. The BACE approach enables
calculations of the averages of the posterior means and standard deviations
of parameters as well as posterior inclusion probabilities (PIP). The posterior
inclusion probability is the probability that, conditional on the data but uncon-
ditional with respect to the model space, the independent variable is relevant

4
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in explaining ∆pt (see Doppelhofer at al 2009; Koop at al 2007). PIP is cal-
culated as the frequency of appearance of a given variable in all considered
models. The BACE results, obtained after 1,000,000 Monte Carlo iterations,
are presented in table 2.

Table 2. Posterior inclusion probabilities and posterior estimates of regres-
sion coefficients obtained by BACE

PIP Avg. Mean Avg. Std. Dev.

π∗t−1 1.000000 −0.186844 0.025828
Id,t 1.000000 0.037903 0.001573
∆pe,t 1.000000 0.264119 0.025146
St−1 1.000000 −0.856166 0.090581
∆pt−1 1.000000 0.279046 0.033585
ydt−1 0.999996 0.193686 0.036891
∆Rs,t−1 0.999949 0.609606 0.114351
∆mt−1 0.999936 0.173201 0.029831
∆po,t−1 0.987283 0.038862 0.011714
Ud
t−1 0.610013 −0.041815 0.040875

ndt−1 0.194672 0.000631 0.001692
Rl,t−1 0.151855 0.006635 0.022907
∆Rl,t−1 0.126007 0.026201 0.111685
∆pe,t−1 0.105244 0.002085 0.011372
md
t−1 0.104247 −0.000513 0.004491

∆Ur,t−1 0.097311 −0.002368 0.024480
const 0.095136 0.000021 0.000643
∆ct−1 0.090481 −0.000170 0.010168
∆nt−1 0.089092 0.000461 0.004619
∆wt−1 0.085100 −0.000306 0.012303

According to the results in table 2, the set of variables used in the BACE
analysis can be divided into 3 groups: highly probable determinants (π∗t−1, Id,t,

∆pe,t, St−1,∆pt−1, y
d
t−1,∆Rs,t−1,∆mt−1,∆po,t−1) with PIP ≥ 0.987, med-

ium probable (Ud
t−1) with PIP = 0.61 and lowly probable (ndt−1, Rl,t−1,

∆Rl,t−1,∆pe,t−1,m
d
t−1,∆Ur,t−1, const,∆ct−1,∆nt−1,∆wt−1) with PIP ≤

0.195. Our results were consistent with Hendrys’ paper because the highly

5
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probable determinants according to the BACE approach were the same as in
model (6). This result confirms that the “conservative” model reduction strat-
egy was relevant in the case of modeling UK inflation. Moreover, our results
confirmed the inconclusive inference on the relevance of Ud

t−1, i.e., the excess
labor demand (with PIP = 0.61, it could not be classified as a highly proba-
ble determinant).
In addition to the posterior characteristics presented in table 2, the BACE ap-
proach allows models to be ranked according to their posterior probabilities.
Table 3 presents the coefficient estimates and model statistics for the top 10
models. The total probability of these models was 50.8%. The most probable
model M1 had the posterior probability 0.2. The second probable model M2,
with probability 0.095, was model (6) in Hendry (2001) and FinalModel in
our notation. In addition, M1 fit the data better then M2 based on the follow-
ing statistics: R

2

M1
> R

2

M2
, σ̂M1 < σ̂M2 and SCM1 < SCM2 .

These two best models differ only by the variable Ud
t−1, i.e., the excess labor

demand. Although the posterior probability of the highest ranked model M1

was more than twice as large as that for the second model M2, an inference
based only on M1 omits 80% of the total information contained in the entire
model space. As a consequence, the average coefficient estimates presented in
table 2 were different than coefficient estimates for the FinalModel in table
1. The greatest differences were noticed for the following variables: ∆pt−1,
ydt−1, ∆mt−1 and ∆po,t−1.
Taking our results into consideration, we confirmed the simplification prob-
lem about the relevance of Ud

t−1, as in Hendrys’ paper. If we use all avail-
able information contained in the whole model space, Ud

t−1 will be classified
as a medium determinant variable with PIP = 0.61. The “conservative"
model reduction strategy dropped Ud

t−1, leading to M2, while the ”liberal”
strategy leads to M1, which includes Ud

t−1. Furthermore, setting the target
size to ”medium” (2.5% significance level) in Autometrics also leads to M1.
The posterior probabilities of the other models P (M3), . . . , P (M10) were less
than 0.038. These models differ from the two best models only by the least
probable variables, and they did not contribute substantial information in this
case.

6
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Table 3. Coefficient estimates and model statistics for top 6 models

Model M1 M2 M3 M4 M5 M6

P (Mj) 0.200 0.095 0.037 0.035 0.026 0.024

π∗t−1 −0.187
(***)

−0.186
(***)

−0.194
(***)

−0.196
(***)

−0.168
(***)

−0.177
(***)

Id,t 0.038
(***)

0.038
(***)

0.038
(***)

0.038
(***)

0.037
(***)

0.038
(***)

∆pe,t 0.265
(***)

0.265
(***)

0.263
(***)

0.262
(***)

0.262
(***)

0.263
(***)

St−1 −0.857
(***)

−0.834
(***)

−0.882
(***)

−0.872
(***)

−0.833
(***)

−0.854
(***)

∆pt−1 0.287
(***)

0.268
(***)

0.288
(***)

0.272
(***)

0.264
(***)

0.283
(***)

ydt−1 0.188
(***)

0.184
(***)

0.216
(***)

0.223
(***)

0.191
(***)

0.192
(***)

∆Rs,t−1 0.625
(***)

0.619
(***)

0.572
(***)

0.547
(***)

0.635
(***)

0.633
(***)

∆mt−1 0.178
(***)

0.182
(***)

0.167
(***)

0.167
(***)

0.162
(***)

0.168
(***)

∆po,t−1 0.037
(***)

0.041
(***)

0.041
(***)

0.045
(***)

0.042
(***)

0.038
(***)

Ud
t−1 −0.069

(**)
−0.062

(**)
−0.062

(**)

ndt−1 0.003
(–)

0.004
(–)

Rl,t−1 0.051
(–)

0.028
(–)

R2 0.976 0.975 0.977 0.975 0.976 0.977
R

2
0.974 0.973 0.975 0.974 0.974 0.974

σ̂ 1.11% 1.14% 1.11% 1.13% 1.11% 1.11%
SC −8.67 −8.66 −8.65 −8.64 −8.64 −8.64

(***) significance at 1%, (**) significance at 5%, (–) insignificance at 10%, R
2

stands
for the adjusted R2, and P (Mj) denotes the posterior model probability of model Mj .

5. Conclusions

Replication of Hendrys’ model for UK inflation in a narrow sense was per-
formed in two programs (gretl and PcGive/Autometrics) and brought exactly
the same results, although they were slightly different than the original. In
the replication in a wide sense, we used BACE as an automatic model reduc-
tion strategy. Taking into account the whole model space, we obtained the
same set of determinants as in Hendrys’ paper, although his FinalModel was

7



Gretl 2019

the second one in the ranking, and it was more than two times less probable
then the most likely model containing the additional variable Ud

t−1. Hendrys’
model omitted over 90% of the information contained in all possible models,
which leads to different coefficients estimates. Referring directly to the find-
ings in Hendry (2001), inference based on just one model may lead to slightly
different conclusions than inference based on the whole model space.

Acknowledgements: We are grateful to Riccardo Lucchetti for helpful comments.
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Model selection for modeling the demand for narrow
money in transitional economies

Marcin Błażejowski∗ , PawełKufel∗∗ , Jacek Kwiatkowski∗∗∗ ,
Tadeusz Kufel∗∗∗∗ , Magdalena Osińska∗∗∗∗∗

Abstract: The aim of this study was to verify the stability of monetary systems in se-

lected emerging economies. The United Kingdom’s economy was used as a benchmark.

The Baumol-Tobin and Friedman monetary models were used as the theoretical basis for

the empirical error-correction models. A Bayesian averaging of classical estimates (BACE)

approach was used to incorporate model uncertainty and select the best model. The results

show that the monetary systems in 6 of the 11 economies were stable in the long run and that

a set of factors changed in the short run. The robustness of the model selection based on the

BACE procedure was strongly confirmed.

Keywords: Model uncertainty, BACE, Jointness, Robust variables selection, gretl.

1. Introduction

This paper was motivated by the question of whether Milton Friedman and
Anna Schwartz’s model of the demand for money (Friedman et al. 1982)
is appropriate for contemporary transition economies. This idea comes di-
rectly from the works of Hendry et al. (1991), who analyzed the specifica-
tions of several money demand models for the United Kingdom (UK) and the
USA. The aim of this paper is to consider both economic and econometric is-
sues. The first aspect, closely related to motivation, focuses on the question of
whether economies in transition are affected by the set of money demand fac-
tors that was proposed by Friedman et al. (1982) and which of them are robust
despite of volatile surroundings. The second aspect, which is related to using

∗WSB University in Torun, Poland, marcin.blazejowski@wsb.torun.pl
∗∗WSB University in Torun, Poland, pawel.kufel@wsb.torun.pl
∗∗∗Nicolaus Copernicus University in Torun, Poland, jkwiat@uni.torun.pl
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an econometric methodology, is to evaluate both the probability of each factor
included in the model and the probability of the entire model specification.

2. Methodological background

Building a model with a large number of explanatory variables can poten-
tially lead to decision-making problems. One potential solution to overcome
this issue is using the BACE approach, which enables the measurement of
the importance of particular potential determinants. This method was sug-
gested by Sala et al. (2004) and is is a rough approximation of the earlier
Bayesian model averaging (BMA) technique presented by Fernandez et al.
(2001). BACE is performed with noninformative priors. As a consequence of
the estimation method, BACE uses the Schwarz model selection criterion, so
the posterior weights of the estimated models are proportional to the natural
logarithm of the likelihood function corrected for degrees of freedom. Based
on the BACE results, we can also calculate one more useful characteristic: a
jointness measure. According to Ley et al. (2007), jointness is the posterior
odds ratio of the models including both xi and xj explanatory variables versus
that of the models that include them separately.

3. Model specification and data characteristics

In this paper, we use two different model specifications in three variants
each for selected transition economies and the UK, which plays the role of
the benchmark. Among the transition economies, we consider two groups:

• new member states of the European Union coming from Central and
Eastern Europe, such as the Czech Republic (CZE), Hungary (HUN)
and Poland (POL);

• economies struggling to develop very fast: Brazil (BRA), India (IND),
Indonesia (IDN), Mexico (MEX), Russia (RUS), Turkey (TUR) and
South Africa (ZAF).

Money demand is defined here as the demand for narrow money and is mea-
sured as aggregate M1. The rationale for the selection of this aggregate comes

10
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from the fact that it contains the same monetary categories across the entire
sample for all economies being investigated. According to Hendry (1995),
the narrow money category is appropriate when the stability in the long run
is checked. The sample covers the years 1995-2017, using quarterly observa-
tions. Using this time frame ensures the comparability of both the data and the
results. From 2008-2009, all the economies experienced deep economic re-
cession; a dummy variable for this period was also employed. The following
macroeconomic time series were collected from the OECD.Stat database:

• GDPt – expenditure approach;

• Pt – GDP price deflator;

• Mt – narrow money aggregate;

• IMPt – imports of goods and services;

• Rt – short-term interest rate;

• imRt – immediate interest rates.

Based on the original time series, the following variables were calculated.
Real TFE according to formula: Yt = (GDPt + IMPt) /Pt, which is equiv-
alent to TFE, as defined by Hendry at al (1991). Then, the following interest
rate was defined as dRt = Rt−imRt, which is the premium of holding money
in three-month deposits. This variable corresponds to Friedman’s differential
yield on money (Friedman at al 1982). Additionally, for the period of low
short-term interest rates, the following dummy was used:

R08t =

{
Rt, from 2008Q2 to 2013Q4,

0, in other periods.

We also defined dummy variables for regional crises. Following Hendry et
al. (1991), we allow two alternative assumptions regarding parameter δ. If
δ = 0.5, the Baumol-Tobin square-root model for the transaction demand for
cash is applied (Baumol et al. 1962; Tobin 1956) and the case when δ = 1.0

corresponds to Friedman’s quantity theory Friedman ). Hendry et al. (1991)

11
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found that for the UK, Friedman’s model should be applied, while in the case
of the United States, the Baumol-Tobin model should be used. Taking the
above into account, an error-correction term can be defined as:

ECMt =

{
mt − pt − 1

2
yt, for Baumol-Tobin model (specification type 1),

mt − pt − yt, for Friedman model (specification type 2).
(1)

The interest rates may be included in different ways. In our research, IR is
a set of 4 different combinations of interest rate measures. It takes one of the
following specification forms:

IRt =


∑4

s=0 γ1,sRt−s +
∑4

s=0 γ2,simRt−s +
∑4

s=0 γ3,s∆R08t−s, ‘a’,∑4
s=0 γ1,s∆Rt−s +

∑4
s=0 γ2,s∆imRt−s +

∑4
s=0 γ3,s∆R08t−s, ‘b’,∑4

s=0 γ1,sdRt−s +
∑4

s=0 γ2,s∆R08t−s, ‘c’,∑4
s=0 γ1,s∆dRt−s +

∑4
s=0 γ2,s∆R08t−s, ‘d’.

(2)
These four specifications are in line with those in Friedman et al. (1982)
and Hendry et al. (1991). In our research, the dummies for 3 months of
interest rates were used beginning with the second quarter of 2008 until the
last quarter of 2013, which corresponds to a low interest rate period. Tak-
ing into account the relations 1 and 2 we have 8 possible forms of a general
unrestricted model for each analyzed country. We employed the BACE 1.1
package (Błażejowski et al. 2018).

4. Empirical results

In this section, the empirical results obtained using the research strategy
described in sections 2 and 3 are presented and discussed. Because the error-
correction term is included in the model and we have 8 possible specifications
for each country, we have defined the minimum conditions for ECM variable
that must be met by the posterior results for a given specification to be taken
into account in the next steps: the sign of the mean value of coefficient es-
timate must be negative and, at the same time, the minimum value of PIP,
which is interpreted as uncertainty measures, must exceed 2/3 (0.66).
The results show that for Brazil, Russia, Indonesia and India we cannot find
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a specification that meets the minimum conditions for the ECM variable de-
fined above, while Hungary, the only one ECM variable with PIP > 0.66

has a positive sign. This apparent instability results from massive financial
problems experienced in 2008 and the immense rescue package that Hun-
gary received from several institutions: 6.5 billion euros from the European
Union, 12.5 billion euros from the International Monetary Fund and 1 billion
euros from the World Bank (Csáki 2013). On the other hand, for 6 countries,
more than 1 specification satisfies these conditions. For those countries, the
ranked total probability of the models was used as the criterion for select-
ing the best specification. We can state that for the analyzed economies in
transition (without the UK) in 4 cases, specification type 1 (Baumol-Tobin’s
model) is preferred, and in 6 cases, specification type 2 (Friedman’s model)
outperforms. Moreover, specification type ‘d’ is selected for 9 cases, with the
exception of only Russia, where type ‘b’ is selected. This result means that
the dynamics of the premium of holding money for 3 months (∆dRt) is an
appropriate measure of the interest rate for modeling the demand for narrow
money in the analyzed economies. The type ‘a’ and ‘c’ specifications seem to
be inadequate. It is worth mentioning that the results for modeling the money
demand for the UK are in line with the results presented in Hendry et al.
(1991). Although numerous external and internal shocks in the UK economy
have occurred since Hendry’s model was developed, the proposed model se-
lection procedure confirms that it is still valid: the most likely specification is
Friedman’s model incorporating a ‘spread or net opportunity cost’ of holding
money (our specification 2d). This result can be interpreted as a confirmation
of the accuracy of our approach because the UK served as our benchmark.
The output can be summarized as follows. First, we noticed that two alter-
native model specifications denoted as 1 and 2 were supported by the data.
The Baumol-Tobin model was confirmed for the Czech Republic, Poland and
Turkey. On the other hand, Friedman’s quantity theory was successfully im-
plemented for Mexico, Indonesia, ZAF and the UK. This result means that in
the long run, the difference in the proportionality of the demand for money is
distinct at both the theoretical and empirical levels.

The main finding is that in such countries as Brazil, Russia, Indonesia
and India, we cannot confirm the stability of the monetary systems measured

13
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in terms of aggregate M1 because the values of ECM are usually negative
but rather unlikely (although the PIP for the ECM variable for Russia equals
0.641 and for Indonesia, equals 0.647). For Hungary, the sign of the ECM
is positive, which excludes it from consideration. In the remaining countries,
stability was fully confirmed. The highest level of stability observed across
all specifications (apart from 1a and 2a) is for South Africa, where the proba-
bility exceeds 0.88. For the Czech Republic and the UK, six specifications are
confirmed. For Poland and Turkey, four specifications were valid: were 1c,
1d, 2c, and 2d. For Mexico, specifications 1d and 2d confirmed the stability
of the monetary system. When the long-run specifications are compared, one
can notice that specification 2 (Friedman model) outperformed specification
1 (Baumol-Tobin model).

In summary, for five cases, we cannot fully confirm the stability of the
monetary system measured in terms of aggregate M1, although, the valued for
Russia and Indonesia are close to the limit value of PIP. The monetary sys-
tems represented by narrow money are stable in the transitional economies:
the Czech Republic, Poland, Mexico, Turkey and South Africa. Stability is
also confirmed for the UK. A further analysis is conducted on the concomi-
tance of the factors in different specifications (jointness). An analysis of the
jointness results leads to the following conclusions:

• There are no complementary pairs for India.

• For Indonesia, ∆pt−s coexists with the interest rate and ∆mpt−s; in
Poland, ∆pt−s with ∆mpt−s; and in Brazil, the 2008 financial crisis
coexists with ∆yt−s.

• For Turkey, the dummy Cr_Tur01t coexists with ∆yt−s, ∆pt−s, Rt−s

and imRt−s.

• For the UK, the following variables have individual impacts: ECMt−1

with ∆pt−s, Cr_Fint and Cr_Asia97t. On the other hand, in each
specification, 3 variables occur together: ∆pt−s,Cr_Fint,Cr_Asia97t.
It can be easily seen that R08t−s, Rt−s, imRt−s, and ∆yt−s remained
unrelated with the other variables.
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• The variable ∆pt−s always pairs with other variables, with the excep-
tion of Brazil.

• The most pairs can be observed for the UK, Mexico and Turkey.

• ECMt−1 coexists in pairs in the Czech Republic, South Africa and UK.

In the cases where complementary pairs of variables are detected, the joint
explanatory power of such pairs is greater than if they are considered indi-
vidually. This type of analysis supports the interpretation of the results of the
short-run model. For example, for Russia ∆pt−s,∆mpt−s, and ∆Rt−s appear
in specification 1b, which is most likely. This result means that that three
factors are responsible for the short-run dynamics of the demand for narrow
money in Russia. The results are similar for the Czech Republic, Poland, In-
donesia, Mexico, Turkey, South Africa and the UK. The results for India and
Brazil show that the relations between the variables are dubious, which con-
firms the results from the BACE. For Hungary, this occurs for only one pair
of complementary variables, but this result is not stable in the long run, when
one of the complementary variables is a dummy variable and the results show
occasional relationships.

5. Robustness analysis

To confirm the empirical findings, we performed a robustness check. Since
the analysis addresses variable and model selection issues, we decided to ap-
ply Ockham’s razor rule. In our analysis, the prior average model size was
set to E(Ξ) = k/2 (where k is the number of variables in a given GUM).
This means that we do not prefer any specification, so all possible models are
equally probable. For the BACE approach, the use of Ockham’s razor rule
is very simple, and the only change we have to make is to set the prior aver-
age model size to a reasonably small value to penalize the large models (in
terms of the number of variables). If the resulting average size of the poste-
rior model is similar for both normal and small values of E(Ξ), the empirical
results are robust.
In all cases, for E(Ξ) = k/2 (uniform prior on model space), the values of
the average size of the posterior model are smaller than the corresponding

15



Gretl 2019

values of the average size of the previous model. This result means that the
most parsimonious specifications are preferred, and the BACE results are in
line with Ockham’s razor rule. Moreover, the differences between the values
of the average size of the posterior model for different E(Ξ) are small. The
maximum difference is equal to to 2.76, but the median difference is equal
to 0.92 and the mode difference is 0.68. When the values of Pearson’s cor-
relation coefficients between the corresponding values of PIP in normal and
small values of E(Ξ) are compared, they are very close to 1 in all cases. The
same conclusions are true for the means of the parameters’ estimates in the
same models. This means that the empirical results are strongly robust.
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Estimating segmented regression in gretl

Andrea Bucci∗ , Andrea Faragalli∗∗ , Edlira Skrami∗∗∗ ,
Marianxhela Dajko∗∗∗∗ , Flavia Carle∗∗∗∗∗ Luigi Ferrante∗∗∗∗∗∗

Abstract: In many fields, including biology, epidemiology, and toxicology, response vari-

ables are often related to one or more explanatory variables in a segmented way, i.e. two or

more straight lines are connected at given change-points. A researcher may be interested in

estimating the parameters of such regression and the location of the change-point(s). To do

so, a linearization of the non-linear term may be implemented to obtain a linear model easy

to estimate. Thus, we created a Gretl package capable of estimating the parameters and the

breakpoint(s) in a piecewise regression. Finally, we used it to estimate chronological age in a

Bayesian calibration framework.

Keywords: Segmented regression.

1. Introduction

In analysing the relationship between a response variable and a set of co-
variates, sometimes it happens that this relationship presents one or more
break-points, i.e. points where the relationship changes unexpectedly. In such
cases, linear regression does not accurately fit the data, given the presence of
the so-called segmented or broken-line relation (see Figure 1 for an example
of segmented line).

When a relationship is supposed to be piecewise linear, it is necessary to
define the number of break-points, ψ = {ψj, . . . ψm}, and the location of
them. However, the presence of two or more straight lines connected makes
the estimation quite difficult because the log-likelihood becomes piecewise
differentiable, see Feder (1975). Consequently, Muggeo (2003) introduced a
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method to estimate broken line model’s coefficients by the linearization of the
piecewise regression.

2. Estimating Segmented Regression

Let Y be a response variable,and X a set of covariates, with a non-linear
term for a covariate Z, g(Z;ψj), the following model:

y = β1 + β2X +
m∑
j=1

β3,j · g(Z;ψj) (1)

can be written as follows if a number of m breakpoints is assumed:

y = β1 + β2X +
m∑
j=1

β3,j(Z − ψj)+ (2)

if g(·) is assumed to be a segmented relation where (Z − ψj)+ is specified as

(Z − ψj)+ =

{
(Z − ψj) if Z > ψj

0 if Z ≤ ψj
(3)

then, the log-likelihood of such model is not differentiable when Z = ψj .
As a consequence, the maximum likelihood estimation of β should be ob-

tained by linearizing (Z − ψj)+ through first order Taylor expansion around
ψ

(0)
j , such that the non-linear term g(·) may be written as

g(Z;ψj) = (Z − ψj)+ ≈ (Z − ψ(0)
j )+ + (ψj − ψ(0)

j )(−1)I(Z > ψ
(0)
j )

where(−1)I(Z > ψ
(0)
j ) is the first derivative of (Z − ψj)+ assumed in ψ(0)

j

and I(·) is the index function, such that I(Z > ψ
(0)
j ) = 1 if Z is greater than

the parameter ψ0
j , and 0 otherwise.

The estimation process of parameters through maximum likelihood should
be the following:

1. Fix ψ(0)
j and δ > 0.
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2. At iteration k, calculate

U
(k)
j,i = (Zi − ψ(k)

j )+ and V
(k)
j,i = −I(Zi > ψ

(k)
j ).

3. Substitute in Equation (2) the nonlinear term (Z − ψj)+ with U (k)
j and

V
(k)
j as follows

yi = β
(k)
1 + β

(k)
2 Xi +

m∑
j=1

(
β
(k)
3,jU

(k)
j,i + ϕ

(k)
j V

(k)
j,i

)
(4)

where
ϕ
(k)
j = β

(k)
3,j (ψj − ψ(k)

j ). (5)

4. Estimate the parameters in Equation (4) and calculate

ψ
(k)
j =

ϕ̂
(k−1)
j

β̂
(k−1)
3,j

+ ψ
(k−1)
j . (6)

5. Repeat from Step 2 until convergence, i.e. max | ψ(k)
j − ψ

(k−1)
j |< δ, at

K-th iteration. The maximum likelihood estimates for β are given by:

β̂ =

(
β
(K)
1 , β

(M)
2 , β

(K)
3,1 , . . . β

(K)
3,m

)

In this way, the non-differentiable model (2) may be treated as a linear model
with covariates W = {X,U1, . . . , Um, V1, . . . , Vm} and parameters, θ = {β1,
β2, β3,1, . . . , β3,m, ϕ1, . . . , ϕm}. From Equation (5) it is clear that improve-
ments of estimates of the breakpoint depend on the ratio ϕ̂j

β̂3,j
. It is worth

noticing that this ratio, given that β̂3,j should be different from zero, never
goes to infinity; see Muggeo (2003). We implemented a function package, in
Gretl, which allows to obtain estimates of coefficients in a broken-line model
and location of break-point(s). In Section 3, we further applied such package
on a simulated dataset to obtain estimates of chronological age from a dental
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maturity index in a Bayesian framework.

3. Example

Following Ferrante et al. (2015), we used a Bayesian calibration model
with Normal probability to estimate the unknown simulated chronological
age. In such context, we specified the expected value of a distribution as a
segmented relation (SNBC) with a single breakpoint, such that

µ(y, β) = β
(K)
1 + β

(K)
2 y + β

(K)
3 U (K) + ϕ(K)V (K) (7)

where U (K) = (y − ψ(K))+ and V (K) = −I(y > ψ(K)). The probability
model (see Ferrante et al., 2015) becomes

p(x | y, θ) =
1√

2πσ2
exp

{
−

(
x− β(K)

1 − β(K)
2 y − β(K)

3 U (K) − ϕ(K)V (K)
)2

2σ2

}
. (8)

From this model, we estimated chronological age on a simulated dataset and
compared the estimation results with a set of competing models. We showed
that the calibrating method implementing segmented regression exhibited lower
MAE, and RMSE compared to competing models. In addition, IQR was lower
for the segmented-based model, SNBC. These results were valid regardless of
which break-point had been chosen.
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Figure 1. Two possible segmented relations.
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Table 1. Performance of the considered models using simulated data.

Method MAE RMSE IQRERR MCI95%
ψ = 5
SNBC 0.778 1.103 0.923 3.886
LNBC 0.940 1.169 1.513 5.529
Linear regression 1.014 1.241 1.719 5.844
ψ = 8
SNBC 0.586 0.834 0.805 2.646
LNBC 0.758 0.908 1.389 3.390
Linear regression 0.770 0.942 1.505 3.523
Where LNBC implies the use of a linear relationship in the location parameter,
linear regression is a simple regression model where the chronological age
is the dependent variable.

4. Conclusions

Estimating piecewise regression can be tricky for the presence of the change-
point(s). Following Muggeo (2003), we proved that a linear model may be
derived from it. Then, we implemented a package in Gretl which allows to
estimate the coefficients and the location of the breakpoint in a segmented
regression. We used it to estimate chronological age in a Bayesian context,
proving the superior performance in terms of estimation accuracy.
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Spatial models in gretl: the SPM package
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Abstract: This article presents a new package for estimating cross-sectional spatial models

in gretl, named SPM. The package can handle three types of models: Spatial Autoregressive

Models (SAR), Spatial Durbin Models (SDM) and Spatial Error Models (SEM). The first

integrates the canonical linear model by including spatial lags of the dependent variable, the

second also includes spatial lags of independent variables, and the last examines spatially

autoregressive errors. Computation of the Hessian matrix is performed in both analytical and

mixed ways. Some speed-up procedures for the computation of the log-determinant term

are implemented and compared. Finally, results of the proposed package are compared with

those of some software alternatives, namely Matlab Spatial Econometric Toolbox, Stata

module sp and R packages spatialreg and spdep.

Keywords: Cross Sectional Spatial Models, Maximum Likelihood Estimation,
Software Comparison.

1. Introduction

Spatial econometrics deals with spatial data, representing particular kinds
of observations associated with geographical areas. These could include coun-
tries, regions or more in general, points with a particular position in space.
The intuition is that space matters, requiring ad hoc models able to take into
account the existence of some spatial relationships among variables. Because
of the two concepts of spatial dependence and of spatial spillovers, the stan-
dard assumptions of linear models no longer hold. Spatial dependence makes
values of one particular area dependent on values of the near locations - with
nearer areas more important than farther areas - thus implying a simultaneous
data generating process.

There are nowadays several tools for dealing with spatial models, but none
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was yet included in gretl. With this work we aim at filling this gap, introducing
also some speed up procedures for large dataset. There are indeed two aspects
which could severely affect the procedure’ speed: the computation of the an-
alytical Hessian matrix, and of the log-determinant term - entering in the like-
lihood function - which implies a huge computational burden. The proposed
SPM gretl package can handle cross-section estimation of Spatial Autoregres-
sive, Spatial Durbin and Spatial Error models via Maximum Likelihood. For
what concerns the Hessian matrix, we provide both the pure analytical and the
mixed solution as proposed in LeSage and Pace (2009). The computation of
the log-determinant term in the profile likelihood ln |In − ρW | is performed
analytically, exploiting the LU factorisation, and with two approximations,
namely Monte Carlo and Chebyshev polynomials.

2. The Spatial Autoregressive process and the Weight matrix

The concept of spatial dependence, which makes values of one particu-
lar area dependent on values of the near locations - with nearer areas more
important than farther areas - would imply a simultaneous data generating
process. Unfortunately, it is useless to formalise a model taking into account
all the possible spatial relationships among variables, especially for a large
dataset: with n observations, the number of potential dependence relations
which could arise is equal to n2 − n. The over-parametrisation issue was
solved by Ord (1975), who proposed a more parsimonious specification able
to summarise the concept of spatial dependence and the degree of interactions
between regions into only two terms: the parameter ρ and the spatial weights,
wij . Formalising this structure, we obtain a DGP which is called spatial au-
toregressive process1:

yi = α + ρ
n∑
j=1

wijyj + εi, (1)

in which yi is the observation of a variable in the i-th region and εi is a nor-
mally distributed error term with zero mean and variance σ2. The summation

1 We will follow the notation of LaSage and Pace (2009).
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∑n
j=1wijyj defines the spatial lag, representing a linear combination of val-

ues of y built from neighbour areas of the observation i. The collection of the
spatial weights wij allows to build the spatial weight matrix W , of dimension
n× n, which describes all the spatial relationships among areas.
The W matrix plays a crucial role in the estimation phase and must be con-
structed properly, satisfying some properties. Firstly, wii = 0, meaning that
the spillover from i to itself will not be computed. Then, wij > 0 only if there
exists a neighbour relationship between the two regions, otherwise it is set to
0; in practice, matrix W is often sparse. The matrix could also be asymmet-
ric, so it could happen that wij 6= wji. Finally, the spatial weights should be
“exogenous”, meaning that the phenomenon under investigation should not
be correlated with spatial weights2. In the SPM package, W will be imported
from other sources and it is important to normalise it for computational pur-
poses: this normalisation implies that the maximum eigenvalue should be set
equal to 1. This can be achieved by imposing the sum of each row equal to
1, defining a row stochastic spatial weight matrix. In SPM, this is done by
default.

3. The Spatial Autoregressive model and the Spatial Durbin Model

The Spatial Autoregressive Model (SAR) and the Spatial Durbin Model
(SDM) will be jointly analysed, as it is possible to see the latter as an exten-
sion of the former. The SAR model includes indeed spatial lags of the depen-
dent variable only, whereas the SDM adds also spatial lags of the covariates.
Generalising, and defining the explanatory variables as Z = [ιnX WX] and
the related parameters δ = [α β θ]′, it is possible to write:

y = ρWy + Zδ + ε (2)

y = (In − ρW )−1(Zδ + ε) (3)

ε ∼ N(0, σ2In),

2 For further information on the construction of the spatial weight matrix, see the existing literature on
the topic (Anselin 1988, LeSage and Pace 2009, Arbia 2014).
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where equation (2) denotes the SAR if Z = [ιnX] or the SDM if
Z = [ιnX WX], and equation (3) the related DGP.

Estimation of parameters ρ, δ and σ2 can be implemented via Maximum
Likelihood3. The log-likelihood function is given by:

lnL = −(n/2)ln(πσ2) + ln|In − ρW | −
e′e

2σ2
(4)

e = y − ρWy −Xβ
ρ ∈ (min(ω)−1,max(ω)−1), (5)

in which ω contains the eigenvalues of the spatial weights matrix. If W has
been scaled such to have the maximum eigenvalue equal to 1, it is possi-
ble to restrict the interval such that ρ ∈ (min(ω)−1, 1). As already men-
tioned, the way in which W is built has several consequences for estimation
purposes. Another computational difficulty may arise while computing the
log-determinant in equation (4); Section 5 will deepen the matter and pro-
vide some solutions to achieve good results with gains in computational time.
The optimisation problem can be easily handled using the concentrated log-
likelihood (equation (6)) as a function of the only parameter ρ, as in LeSage
and Pace (2009). δ and σ2 can be consequently derived as a function of the
estimated ρ. This can be summarised in:

lnLρ = c+ ln|In − ρW | − (n/2)ln[(e0 − ρed)′(e0 − ρed)] (6)

e0 = y − Zδ0 (7)

ed = Wy − Zδd (8)

δ0 = (Z ′Z)−1Z ′y (9)

δd = (Z ′Z)−1Z ′Wy, (10)

in which c is a constant term, δ0, e0, δd and ed are computed ex ante from two
auxiliary regressions of y and Wy on Z respectively. The Maximum Likeli-
hood estimates of parameters δ̂, σ̂2 and the associated disturbances variance-
covariance matrix Ω̂ are given by: δ̂ = δ0−ρ̂δd, σ̂2 = n−1(e0−ρ̂ed)′(e0−ρ̂ed)
3 However, note that, on the contrary of standard linear models, in those including spatial lags the
interpretation of parameters is not straightforward.
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and Ω̂ = σ̂2[(In−ρ̂W )′(In−ρ̂W )]−1. Finally, to calculate standard errors and
the related t statistics, the variance-covariance matrix of the parameters is nec-
essary. Following the maximum likelihood framework, it is equal to−(H)−1,
where H denotes the Hessian matrix. However, straightforward evaluation
of the analytical Hessian or information matrix element ∂2L/∂ρ2 involves
computing a trace term which contains the n × n matrix A = (In − ρW )−1,
specifically equal to tr(WAWA+WAA′W ′). This trace term becomes prob-
lematic for large n, so a “mixed” analytical-numerical strategy, as named in
LeSage and Pace (2009), is adopted as an alternative. This method simply ex-
ploits the second derivatives of the univariate profile likelihood with respect
to ρ which arise after the optimisation, ∂2Lρ/∂ρ2.

4. The Spatial Error Model

The Spatial Error Model (SEM) contains spatial dependences in the dis-
turbances, as shown in equation (11), with (12) being the DGP.

y = Xβ + u (11)

u = λWu+ ε

y = Xβ + (In − λW )−1ε (12)

ε ∼ N(0, σ2In).

The full log-likelihood is given by:

lnL = −(n/2)ln(πσ2) + ln|In − λW | −
e′e

2σ2
(13)

e = (In − λW )(y −Xβ).

Again, it is possible to concentrate the log-likelihood, as a function of the only
parameter λ, and then recover β and σ2; unlike the previous case, however,
e(λ)′e(λ) is not a simple quadratic form of the parameters, but is derived from
moment matrices as in (15)

lnLλ = c+ ln|In − λW | − (n/2)ln(e(λ)′e(λ)) (14)
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AXX(λ) = X ′X − λX ′WX − λX ′W ′X + λ2X ′W ′WX (15)

AXy(λ) = X ′y − λX ′Wy − λX ′W ′y + λ2X ′W ′Wy

Ayy(λ) = y′y − λy′Wy − λy′W ′y + λ2y′W ′Wy

β(λ) = AXX(λ)−1AXy(λ)

e(λ)′e(λ) = Ayy(λ)− β(λ)′AXX(λ)β(λ).

The values for β̂ and σ̂2 can be recovered, again, straightforwardly (LeSage
and Pace (2009)). The variance-covariance matrix is computed, as in the pre-
vious case, in both analytical and mixed ways, with the only difference that
for the SEM, the exploited second derivative of the profile likelihood involves
parameter λ instead of ρ. The comparison of the different Hessian calcula-
tions will be carried out in Section 6, where also the various approaches to
deal with the log-determinant will be analysed.

5. Log-determinants and computational advantages

Speed up procedures for the estimation of spatial models are often imple-
mented, given the computational burden of several components such as the
log-determinant term, especially when n is large. In SPM we implemented
routines that compute two well-known approximations of ln |In−ρW |, specif-
ically Monte Carlo and Chebyshev polynomials4.
The Monte Carlo approximation exploits the fact that the log-determinant
equals the trace of the logarithm of the matrix (In − ρW ):

ln |In − ρW | = tr[ln(In − ρW )].

Given this starting point, two results follow. Firstly, the logarithm of the
matrix can be expressed as an infinite series of the kind: ln(In − ρW ) =

−
∑∞

i=1
ρiW i

i
. Secondly, since the trace operator is linear, we can rewrite the

problem as: tr[ln(In − ρW )] = −
∑∞

i=1
ρitr(W i)

i
.

It is now possible to approximate the log-determinant through a finite,
4 For further technicalities see LeSage and Pace (2009).
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lower-order series of order q, obtaining:

ln |In − ρW | ≈ −
q∑
i=1

ρitr(W i)

i

However, generating all the powers of the matrixW and computing their trace
is inefficient from a computational point of view. It can be proven that we can
estimate the trace of the matrices by a quadratic form T̃ i = u′W iu, where
u is a random n × 1 vector drawn from a Gaussian distribution. In order to
increase the computational accuracy, T̃ i is recomputed m times replacing the
random draw of u. Then, averaging over the m iterations, we end up with the
following estimated quantity:

ln |In − ρW | ≈ −
1

m

m∑
j=1

q∑
i=1

ρiT̃ ij
i
.

For what concerns instead the Chebyshev approximation, it exploits the possi-
bility of calculating the log-determinant via Chebyshev polynomials of degree
q, with the advantage of being computed recursively as follows:

tr[ln(In − ρW )] ≈
q+1∑
j=1

cjtr(Tj−1(W ))− n

2
c1.

In particular, cj are the Chebyshev coefficients and are defined as:

cj(ρ) =
2

q + 1

q+1∑
k=1

f(xk) cos

(
π(j − 1)(k − 1

2
)

q + 1

)
xk = cos

(
π(k − 1

2
)

q + 1

)
f(x) = ln(1− ρx);
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Tj(W ) are the Chebyshev polynomials, expressed as:

T0(W ) = In

T1(W ) = W

Tq+1(W ) = 2WTq(W )− Tq−1(W ) q ≥ 1.

6. Performance of different computational techniques

The previous Section introduced the variety of available options concern-
ing the computation of the log-determinant term. By use of a Monte Carlo
simulation, this Section aims to compare the actual impact of those techniques
on the time required for the estimation procedure of a SAR model. The sim-
ulation design is very simple: data are generated by a spatial autoregressive
process as in Equation (3) where the dependent variable y and the error term
ε are drawn from a Gaussian distribution. We fixed the constant term α = 0.5

and the regression coefficient β = 1. The parameter ρ assumes values in
{0, 0.25, 0.5, 0.75}. We assume that all the observations (n = 10000) lay in a
linear space and the weight matrixW is built as a first-order contiguity matrix.
The number of replications is N = 50.

Table 1. Average computational time (in seconds), n = 10000

ρ = 0 ρ = 0.25 ρ = 0.50 ρ = 0.75

Analytical Mixed Analytical Mixed Analytical Mixed Analytical Mixed

ldet() 692.11 665.06 923.39 890.02 977.87 942.01 1188.5 1139.4

MC(30, 50) 370.40 335.25 374.10 335.81 376.55 335.91 371.20 315.24
MC(50, 50) 487.33 452.84 498.05 455.54 495.11 451.41 478.68 417.32
MC(50, 100) 792.41 767.11 789.75 752.63 766.90 743.22 730.93 698.52

Chebyshev(5) 225.11 199.98 230.46 201.64 242.65 204.94 252.89 205.19
Chebyshev(10) 310.23 285.56 315.12 283.97 339.01 301.78 338.01 290.59

Table 1 reports the average time required by the estimation procedure with
six different techniques5 (by row) run for eight different scenarios (by col-
umn). Concerning the notation, ldet() is the gretl function that computes the
5 Reported methods produce estimated parameters and std. errors that differ at the fifth decimal point.
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log-determinant exploiting the LU factorisation and represents the pure ana-
lytical method. The Monte Carlo approximation is denoted by MC(·,·) where
the first item is the length of the approximating series and the second the
number of inner replications. Finally, Chebyshev polynomial and the related
order are given by Chebyshev(·). For each value of ρ we report the CPU-time
in seconds according to whether the Hessian is computed as “pure analytical”
or via the “mixed” strategy.

As expected, ldet() is the slowest solution.
Regarding the approximations, Chebyshev polynomials behave at best. In
facts, a polynomial of order five is sufficient to perfectly replicate the ana-
lytical results saving up 70% of the time. The MC(·,·) approximation works
properly but it is sensitive to the order of the series and the number of inner
replications we consider. Finally, the usage of the “mixed” Hessian seems to
slightly speed up the estimating procedure.

Further investigations are needed to understand the performance of the
techniques developed in SPM, namely it would be interesting to discuss how
robust are these preliminary results with different, more complex specifica-
tions of the spatial linkages among observations.

7. Empirical application with comparison of results

In order to compare the proposed package with the existing alternatives,
we provide an empirical example exploiting Maximum Likelihood Estimation
within different software packages, in the spirit of Bivand and Piras (2015).
Specifically, we refer to spdep and spatialreg in R6, to Spatial Economet-
rics Toolbox in Matlab7 and to the command spregress, comprehended in
the sp module, in Stata8. We exploit the publicly disposable data used in
Anselin (1988), reporting observations for 49 contiguous Planning Neighbor-
hoods in the city of Columbus, Ohio, for the year 1980. The three variables
are CRIME, INC and HOUSE, which denote the aggregation of burglaries and
vehicle thefts (in thousand USD in the neighbourhood), income (in thousand

6 https://CRAN.R-project.org/package=spdep and https://CRAN.R-project.org/package=spatialreg
7 https://www.spatial-econometrics.com/
8 https://www.stata.com/manuals/spspregress.pdf
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USD) and housing values (in thousand USD), respectively.

Table 2. SAR model (ML) estimation. Dependent variable: CRIME. Standard
errors in parentheses.

gretl R Stata Matlab

Intercept 38.065 38.064460 38.06446 38.2720
(6.5519) (6.551942) (6.607553) (6.5661)

INC -0.97346 -0.973458 -0.973458 -0.9777
(0.27115) (0.271153) (0.275893) (0.2713)

HOUSE -0.23279 -0.232790 -0.232790 -0.2331
(0.078048) (0.078048) (0.078012) (0.0781)

ρ 0.58697 0.586961 0.586964 0.5830
(0.10440) (0.104396) (0.106897) (0.1049)

σ2 74.031 74.03103 74.03103 74.1258
(15.153) (15.15279) (15.16223) -

Table 3. SEM (ML) estimation. Dependent variable: CRIME. Standard errors
in parentheses.

gretl R Stata Matlab

Intercept 58.231 58.231002 58.231 58.2307
(6.2420) (6.242020) (6.252355) (6.2451)

INC -0.85775 -0.857755 -0.857755 -0.8576
(0.28714) (0.287144) (0.305209) (0.2871)

HOUSE -0.23807 -0.238072 -0.238072 -0.2381
(0.079773) (0.079773) (0.079774) (0.0798)

λ 0.74878 0.748771 0.748776 0.7490
(0.11143) (0.109814) (0.123736) (0.1098)

σ2 78.099 78.09908 78.09908 78.0899
(16.635) (16.39337) (16.55526) -

The W matrix is constructed as row-stochastic using two direction coordi-
nates x and y to produce spatial contiguity within the matrix. Here we focus
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on the parameters estimation for the SAR model and the SEM. As reported
in Table 2 and Table 3, the estimated parameters and the relative standard
errors are very close. Small differences can be explained with the different
optimisation algorithms employed by each software.

8. Concluding remarks

The SPM package provides a tool for the estimation of cross-sectional spa-
tial models via Maximum Likelihood in gretl. The models which SPM handle
are the Spatial Autoregressive Model, the Spatial Durbin model and the Spa-
tial Error model. Among the main features of the new gretl package there are
the possibility of computing the Hessian matrix in the canonical analytical
way or via a mixed analytical-numerical solution, and some different tech-
niques provided for the computation of the log-determinant term entering in
the likelihood function. These methodologies, other than the analytical com-
putation, include two approximations, exploiting Monte Carlo and Chebyshev
polynomials, respectively. A simulation experiment allows us to compare the
different techniques in terms of speed, and in this respect the better proce-
dure is found to be an approximation via a Chebyshev polynomial of order
five, which allows to save up to 70% of CPU-time with respect to the pure
analytical solution. Finally, an empirical example on crime in different neigh-
bourhoods in the city of Columbus, Ohio, in 1980, allows us to compare the
performance of the SPM gretl package with the existing software alternatives,
namely Matlab Spatial Econometric Toolbox, Stata command spregress and
R packages spatialreg and spdep. The estimated parameters and relative stan-
dard errors are very close, suggesting a good performance of the proposed
procedure from a computational and accuracy point of view.
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SVMs in gretl: the case of ordinal data

Allin Cottrell∗

Abstract: An account is given of recent improvements in gretl’s support for machine learn-

ing via Support Vector Machines. An extended example of prediction of an ordinal outcome

(ranking of wine quality) is presented. Ranking SVMs are shown to offer more accurate pre-

diction than several alternative methods.

Keywords: Machine Learning, SVMs, Ranking.

1. Introduction

This article advances prior discussion of machine learning in gretl in two
main ways. It reports on some recent improvements to gretl’s SVM support,
and it illustrates use of machine learning for ordinal data, complementing
examples using continuous and categorical data in Cottrell (2019).

We confine ourselves to a very brief account of SVMs here. The in-
terested reader is referred to Mullainathan and Spiess (2017), Smola and
Schlöpf (2004), Cottrell (2019). SVMs, for which the classic reference is
Vapnik (1998), subsume earlier machine learning techniques such as decision
trees and neural nets with up to one hidden layer. Unlike the latter methods,
SVMs solve a well-defined optimization problem a case of quadratic pro-
gramming and are not liable to get trapped at a local optimum (Lin and Li,
2008; Berwick, 2003). Their original application was to binary classification
but the method has been extended to cover multinomial classification, regres-
sion (where we have a continuous dependent variable rather than categorical
“labels”) and, more recently, ranking or ordinal outcomes. Nonlinear predic-
tion functions are supported via the so-called “kernel trick” (Jordan, 2004),
which projects the data into a higher dimensional space.

To facilitate understanding of what follows we offer a few words on the
workflow associated with SVMs. The object is to predict out of sample. To
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that end one divides the available data into training and testing subsets. In
the simplest variant, one trains an SVM on the training data then uses it to
generate predictions for the testing data; if the predictive performance of the
model on the latter is good enough one is then encouraged to use it on actually
unseen data.

More commonly, however, training involves cross validation. An SVM
typically includes a (potentially very large) number of coefficients whose
value is set via a training function (as provided by LIBSVM, for example).
But these coefficients, and therefore the predictions, usually depend on at
least one hyperparameter, which must be set either by some rule of thumb or
“optimally”. Optimization of the hyperparameter value(s) is generally per-
formed by cross validation, which involves dividing the training data into k
subsets or “folds”. The algorithm is then, in pseudo-code:

for each hyperparameter value (or set of such values)

for each fold i

train the SVM on k-1 folds, excluding fold i

compute predictions for fold i

end

end

Once this is complete one has a set of predictions for every observation in
the training set, for each hyperparameter specification. One then selects the
“best” specification, according to a chosen loss function, and trains the SVM
on the entire training set. (Note that the testing data are not, and must not be,
referenced in this entire procedure.) Only then do we use the SVM to predict
for the testing data.

2. SVMs in gretl

gretl’s support for SVMs is based on LIBSVM, written by Chih-Chung
Chang and Chih-Jen Lin1, which according to the website svms.org appears
to be the leading SVM software as of this writing. Our SVM “plugin” uses
a modified version of LIBSVM 3.23 (released July, 2018). The modifications
1 See https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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include enhanced random number generation, parallelization via OpenMP,
and support for rank regression (of which more below).

As explained in Cottrell (2019) gretl’s svm function is set up to perform
the whole procedure described above, that is, training with cross validation
followed by prediction for both the training and testing data, although the
steps can be unbundled if desired. Stripped of optional arguments associated
with unbundling, the function has the following simple signature

series svm(list L, bundle parms)

where L is a list holding the dependent variable followed by the explanatory or
predictive variables and parms is a bundle containing parameters. The return
value is a series containing predictions from the SVM.

The parameters that can be set in the parms bundle are detailed in Cot-
trell (2019); we comment below on those that we used in the context of our
empirical example.

3. Empirical example: wine quality

The example offered here draws on Cortez et al (2009). The dependent
variable is a ranking: the perceived quality of Vinho Verde wines from Portu-
gal, on a scale of 0 (very bad) to 10 (very good) this is the median of at least
three scores given by professional tasters. The independent variables or “fea-
tures” (see Table 1) are measures of several physicochemical properties of the
wines. There are two sets of data: red wines (n = 1599) and white wines
(n = 4898). The research question is: how well can one predict the rating of
a wine by tasters, based solely on its objectively measurable characteristics2?

We decided to run a “horse race” between two standard econometric meth-
ods (OLS and Ordered Probit) and three variants of SVM (classification, re-
gression and ranking). This approach evinces an agnostic view of the depen-
dent variable: ostensibly it’s a ranking (which could be seen as calling for
ordered probit on the standard econometric side, or SVM ranking) but might
one usefully treat it as a ratio scale (OLS, SVM regression)? Or might it work
better just to treat it as a case of classification? We’ll see.
2 Replication files (data and scripts) for this exercise are available at http://gretl.sourceforge.
net/svm-files/.
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Table 1. Physicochemical properties of the wines

1 fixed_acidity Fixed acidity, g(tartaric acid)/dm3

2 volatile_acidity Volatile acidity, g(acetic acid)/dm3

3 citric_acid Citric acid, g/dm3

4 residual_sugar Residual sugar, g/dm3

5 chlorides Chlorides, g(sodium chloride)/dm3

6 free_SO2 Free sulfur dioxide, mg/dm3

7 total_SO2 Total sulfur dioxide, mg/dm3

8 density Density, g/cm3

9 pH pH
10 sulphates Sulphates, g(potassium sulphate)/dm3

11 alcohol Alcohol, percent by volume

Compared with Cortez et al (2009) we’re exploring a larger set of models,
but we adopted a relatively simple, ad hoc, method of specification. Based
on gretl’s bkw test for collinearity we excluded some potential explanatory
variables implicated in relations of near-linear dependence, but included (for
OLS and Ordered Probit) quadratic terms that appeared as highly significant
in gretl’s test for nonlinearity.

The variables included in the red wine specification were those numbered
2, 5, 7, 9, 10, 11 and the square of sulphates. For the white wines we used 1,
2, 4, 6, 8, 9, 10, 11 and the square of alcohol. In the SVM specifications we
omitted the squared terms since SVMs can handle nonlinearity without this
sort of nudge.

In comparing methods of prediction it is of course necessary to specify a
loss function. Given that the dependent variable is a discrete ranking, for the
most part we relied upon “percent correct”. This is straightforward for classi-
fication and ranking methods; for continuous regression methods we rounded
predictions to the nearest integer. In addition we computed mean absolute
deviation (MAD) and calculated a “tails correct” percentage. The latter is
motivated by the fact that most of the wines received a middling quality score
of 5 or 6 (82 percent of the red wines, 75 percent of the whites), so perhaps a
prediction method could distinguish itself by its ability successfully to predict
scores out of that range. (“Tail” scores are therefore defined as those less than
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5 or greater than 6.)
We show below the hansl script for SVM regression using the red wine

dataset. The other scripts used to produce the results shown in section 5 are
very similar. Comments follow.

open winequality-red.gdt --quiet

set seed 54321

series sorter = normal()

dataset sortby sorter

list All = quality volatile_acidity chlorides total_SO2 pH \

alcohol sulphates

scalar ntrain = 1066

svm_type = "eps-SVR"

bundle parms = defbundle("n_train", ntrain, "search", 1)

parms.consecutive = 1

parms.quiet = 0

parms.epsilon = 0.06

parms.svm_type = svm_type

parms.use_mpi = 1

series yhat = round(svm(All, parms))

include assess.inp

assess_prediction(quality, yhat, 5, 6, ntrain, svm_type)

Note that the script above begins by randomizing the order of the data (just
in case there’s any systematic pattern to the observations). The same seed is
used in randomization for all methods. We then flag 1066 observations (about
two thirds) for training. Since this case employs SVM regression we select
the ε-SVR type. The other options have the following meanings:

search = 1 Search for hyperparameter values with cross validation us-
ing default grid (see Cottrell, 2019).

consecutive = 1 Take the cross validation “folds” as consecutive blocks of
observations (since the dataset is already randomized).

quiet = 0 Print details of hyperparameter search.
epsilon = 0.06 SVR-specific: set threshold below which prediction errors

are costed at zero.
use_mpi = 1 Use MPI for cross validation (see below).
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Prior to version 2019c of gretl the svm_type parameter had to be given as
an ID number; that’s still accepted but it’s now possible to use a mnemonic
label, which is read on a case-insensitive basis: C-SVC for (unordered) classi-
fication; either eps-SVR or nu-SVR for SVM regression; or C-rnk for SVM
ranking (see section 4).

As regards the use_mpi flag, we have to digress briefly on the subject
of parallelization of SVM calculations. There are two main ways in which
parallelization can speed things up significantly. First, with a trained model
in hand, calculation of predicted values per observation can be divided be-
tween threads using OpenMP. Gretl implements this, following a suggestion
on the LIBSVM website3. Second, an even more substantial speed-up can be
achieved when parameter search via cross validation is performed, by dividing
combinations of data-fold and hyperparameter values between MPI processes.
This can also be done in gretl, in an automatic manner when the use_mpi flag
is set in the parameter bundle.

gretl has supported MPI since 2017, but until very recently it has been up
to the user to organize a division of labour between processes; the automatic
division supported by the svm function is a new departure. Naturally, the auto-
matic method is subject to certain limitations; in particular, it works in “local”
mode only (exploiting multiple cores, if present, on the user’s machine). If
you wish to use multiple machines across a network, you will have to use
gretlmpi (or an mpi block within a gretl script) yourself, see Cottrell (2019a).
But there is some control available to the user in the automatic version. If you
set the parameter use_mpi to 1, gretl invokes one MPI process per physical
core on the host machine; if you set it to an integer value greater than 1, gretl
takes this as the number of processes to be launched.

Still in the context of parameters passed to the svm function, informed
readers may be wondering: what about selection of an SVM kernel? Indeed,
a kernel must be specified when we call LIBSVM, but in the absence of an
explicit choice by the user gretl selects a default that is likely to be best in
most applications for classification and regression, the Gaussian RBF (Radial
Basis Function) kernel.

3 See https://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html#f432.
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Cottrell (2019) gives an account of the other supported options.
This may be a suitable place to point out that what we did in the present

study, namely, apply a single, common randomization of the datasets, leaves
something to be desired. Ideally, one would repeat the whole procedure with
N � 1 different randomizations of the data and report mean or median per-
formance of the prediction methods. That will have to await a follow-up study.

4. SVM ranking methods

Before proceeding to presentation and discussion of results it’s necessary
to say a little about SVM methods specifically geared to ranking, or in other
words an ordinal dependent variable.

Ranking or ordinal regression is not built-in functionality in LIBSVM, but
various methods have been proposed in the machine learning literature. The
approach of Frank and Hall (2001) involves sequential application of a binary
classifier. The idea (or perhaps a simplification thereof) is as follows: Is out-
come i predicted to be greater than zero or not? If the prediction is “not” we
count it as a 0, otherwise we ask: is it greater than 1 or not? And so on, for
each rank and each observation. This is simple, but not necessarily consistent.
It could be, for example, that a case that evaluates as “not greater than zero”
would nonetheless evaluate as “greater than 1” if it were taken to the next
round. We tried the Frank and Hall method, but since (in our experiments) it
was clearly dominated by that of Li and Lin (see below), the results are not
reported here.

More systematic methods for ranking via SVM have been proposed by Li
and Lin (2006) and Cardoso and Pinto da Costa (2007). Of these methods,
which appear to be quite similar, we have chosen to implement in gretl that
of Li and Lin, who made their LIBSVM-based code publicly available4. The
gretl identifier for this SVM type is C-rnk. Li and Lin also propose some new
kernels in addition to those in standard LIBSVM (see Lin and Li, 2008), and
we have now included these in gretl’s SVM implementation. Their “percep-
tron” kernel (gretl label, perc) seems to be particularly suited for effective
ranking. This kernel has the advantage of being “scale-free”: this means that

4 See http://www.work.caltech.edu/~htlin/program/libsvm/.
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there is one less hyperparameter to worry about in cross validation than with
the commonly used RBF kernel, namely the scale factor γ. Search is there-
fore a good deal faster. For this reason gretl selects perc as the default kernel
when the C-rnk ranking SVM is specified.

5. Results

Tables 2 and 3 summarize the results we obtained, for the red wines and
white wines respectively. The first two rows per table show the econometric
methods, Ordinary Least Squares and Ordered Probit; the last three show the
SVMs: unordered classification, regression and ranking. (For the definition
of “correct tails” see section 3 above.)

A first observation is that OLS and Ordered Probit did about equally well
(OLS marginally superior on the red wines, OP marginally superior on the
whites, except in respect of “correct tails”). A second is that all the SVM
methods did better than the standard econometric methods. And a third is that
Li and Lin’s C-rnk SVM is the clear winner in both tables.

Table 2. Results on testing data, red wines

method % correct correct tails MAD

OLS 60.60 13.98 0.428
OP 60.20 13.98 0.432

C-SVC 61.35 26.04 0.437
ε-SVR 63.04 23.96 0.418
C-rnk 65.48 28.13 0.375

It would be a mistake to make over-confident claims on the basis of a single
example, but here are some tentative conclusions with regard to the SVM
variants.

First, SVM classification seems to be quite robust. It’s certainly not always
best for ordinal data (in this example it’s never best) but it seems to reliably
beat standard regression methods, even if narrowly. Second, SVR regression,
while it does quite well on the red wines, is apparently less robust. In our
example it comes out ahead of standard econometric methods but its perfor-
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Table 3. Results on testing data, white wines

method % correct correct tails MAD

OLS 51.07 15.90 0.541
OP 52.65 11.05 0.526

C-SVC 61.95 49.06 0.448
ε-SVR 55.15 24.53 0.490
C-rnk 65.16 50.67 0.380

mance on the white wine data is disappointing compared with other SVMs;
perhaps a wider or deeper hyperparameter search would help. Third, the Li
and Lin ranking SVM, using their perceptron kernel, does an outstanding job
of prediction on the wine quality data. On both the red and white wines it
comes out top on all three criteria: percent correct overall, Mean Absolute
Deviation, and percent correct in the tails of the distributions.

Suppose you were wondering: is there any advantage to prediction of a
ranked outcome via SVM over prediction via standard econometric methods?
Then we’d have to say our answer is Yes. And if you were wondering what’s
the best SVM method for this purpose, our provisional answer would be, that
of Li and Lin.
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Riccardo Ievoli∗ , Lucio Palazzo∗∗

Abstract: In this paper we implement bootstrap in conventional instrumental variables es-

timations using gretl and compare the performance of several methods through simulation

study and an empirical dataset coming from the seminal paper of Acemoglu et al. (2001).

Keywords: Instrumental Variables, Bootstrap methods

1. Introduction

The main purpose of this work is to introduce bootstrap in Instrumental
Variable (IV) linear models using gretl, in order to provide a fast and useful
toolkit for economists and practitioners. Bootstrap methods can help to im-
prove inference in IV estimation, conducted through conventional Two Stage
Least Square (TSLS) estimator and associated t-test. Four types of bootstrap
are implemented in order to obtain confidence sets and p-values associated
to the t/Wald statistic for the null hypothesis H0 : β = 0. The first method
consists in resampling directly rows of the data, while three others are based
on the resampled residuals and original estimates of the parameters.
The paper is organized as follows: bootstrap methods in IV are summarized in
Section 2 while small-scale Monte Carlo exercise and Empirical application
are respectively in Section 3 and Section 4. Finally, Section 5 presents some
concluding remarks.

2. Bootstrap Methods in Instrumental Variables

In this Section we discuss non–parametric, parametric and semi–parametric
bootstraps for IV linear models. We focus on a linear model with only one

∗University of Ferrara, riccardo.ievoli@unife.it
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endogenous regressor:

y = xβ + u; (1)

x = Zπ + v, (2)

where y is the n × 1 vector of the outcome variable, x is an endogenous re-
gressor, Z is a n×k matrix of k ≥ 1 instruments where k is fixed, β represents
the scalar parameter of interest and vector π includes k nuisance parameters
measuring the effects of instruments on the endogenous explanatory variable.

Errors are assumed to be (ui, vi)
′ ∼ iid(0,Σ), Σ =

(
σ2
u ρσuσv
· σ2

v

)
, where

ρ = Cor(ui, vi) measures the level of endogeneity. Instruments are deemed
relevant and exogenous, i.e. E(Ziui) = 0 = E(Zivi), E(Zixi) 6= 0. Thus,
conventional TSLS estimator is defined as:

β̂TSLSn = (x′PZx)
−1

(x′PZy) ; where PZ = Z(Z′Z)−1Z′, (3)

and is simplified in the so called IV estimator when k = 1, expressed as:

β̂IVn =

∑n
i=1 yizi∑n
i=1 xizi

. (4)

First stage coefficients in π are estimated through Ordinary Least Squares
(OLS), i.e. π̂n = (Z′Z)−1Z′x. Model introduced in equations (1), (2) and
also estimator in (3) and (4) can be generalized in order to include more than
one endogenous regressors and control (exogenous) variables (see also Stock
et al., 2002) in both equations.

The first bootstrap applied in IV setting is non–parametric and is denoted
as “pair bootstrap” (Freedman, 1984) which consists in sampling (with re-
placement) the rows of original data matrix: Dn = (y,x,Z)′. After this
resampling, the bootstrap counterpart of TSLS becomes:

β̂TSLS∗T = (x∗′PZ∗x
∗)
−1

x∗′PZ∗y
∗, where PZ∗ = Z∗(Z∗′Z∗)−1Z∗′. (5)

As pointed out by Flores-Lagunes (2007), this method must be slightly mod-
ified to avoid a particular issue; basically, pair bootstrap does not guarantee
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orthogonality between the TSLS residuals and the instruments.

Therefore, we consider two methods based on the combination of boot-
strapped residuals, denoted with the symbols (u∗i , v

∗
i )
′, and original estimates

of the parameters, i.e. β̂n and π̂n. Bootstrapped data D∗n = (y∗i , x
∗
i ) can be

constructed as:

y∗i = x∗i β̂n + u∗i ; x∗i = Ziπ̂n + v∗i ,

and the bootstrapped TSLS estimator becomes:

β̂TSLS∗n = (x∗′PZx∗)(x∗′PZy∗). (6)

Two different techniques can be used to obtain (u∗i , v
∗
i )
′; the so called paramet-

ric bootstrap is based on quantities sampled from the following distribution:(
u∗i
v∗i

)
∼ NIID

(
0, Σ̂

)
; where Σ̂ =

[
σ̂2
u σ̂uv

σ̂uv σ̂2
u

]
.

Furthermore, in the semi-parametric residual bootstrap, residuals are directly
sampled from their Empirical Distribution Function (EDF):

(u∗i , v
∗
i )
′ ∼ EDF(ûi, v̂i)

′, where ûi = yi − β̂nxi; v̂i = xi − Ziπ̂n,

and are rescaled to have mean equal to zero1 and being orthogonal to the in-
struments.
Between presented methods, only the pair bootstrap is considered valid even
if the disturbances are not (jointly) homoskedastic. Moreover, residual boot-
strap could be modified with the so called “wild” residuals, based on a trans-
formation of the disturbances (Wu, 1986). The method consists in resampling
(with replacement) from the following distribution:

(u∗i , v
∗
i )
′ ∼ EDF(ûiξi, v̂iξi)

′, where E(ξi) = 0 and V (ξi) = 1.

We use the Rademacher distribution, i.e. ξi = {−1, 1} with both probabilities

1 We remark that including a constant term in both equations ensures that ū = v̄ = 0
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equal to 1/2, but there are other possible choices.
Previous methods may be straightforward applied in hypothesis testing with-
out imposing the null in bootstrap data generating process (DGP); we consider
bootstrap counterpart of t/Wald statistic for the null hypothesis H0 : β = 0,
expressed as follows:

τ ∗n =
√
nω̂∗−1n (β̂∗n − β̂n), (7)

where ω̂∗/
√
n is the bootstrap counterpart of ω̂/

√
n, i.e. the standard error

of β̂n expressed in (3) or (4). The associated bootstrap p–value, based on the
assumptions that limiting distribution of τ ∗n is symmetric, is computed as:

p∗ = B−1
B∑
b=1

(
∣∣τ ∗n,b∣∣ ≥ |τn|), (8)

representing the proportion of bootstrap statistics greater than τn = n1/2ω̂−1n β̂n.
The null is safely rejected if p∗ ≤ α, where α is the I type error level.

Moreover, bootstrapped residuals can be also modified in order to impose
the null hypothesis in the bootstrap DGP, setting β = 0, as follows:

û0,i = yi − 0 · xi; v̂i = xi − Ziπ̂n,

where û0,i is the vector of residuals from the structural equation, induced
by imposing the null hypothesis. Hence, bootstrap series are re–constructed
using sampled residuals from: (u∗i , v

∗
i )
′ ∼ EDF(û0,i, v̂i)

′, and bootstrapped
data D∗n: x∗i = Ziπ̂n + v∗i ; y

∗
i = u∗i . Thus, the bootstrap counterpart of the

t–statistic is computed in the following way:

τ ∗0,n =
√
nω̂∗−10,n β̂

∗
0,n (9)

where β̂∗0,n and its standard error n−1/2ω̂∗0,n are estimated through TSLS. Boot-
strap p–value is computed as in expression (8) using τ ∗0,n instead of τ ∗n . This
method is also called restricted residual bootstrap and can be valid in presence
of heteroskedasticity applying “wild” residuals in the bootstrap DGP.

We also consider two types of bootstrap-based confidence sets having con-
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fidence level of 1− α: the first is called percentile and is computed as:

CI∗P,1−α = (β̂∗n,α/2, β̂
∗
n,1−α/2), (10)

where β̂∗n,j represent the j–percentile obtained through B replication of boot-
strapped TSLS. The latter confidence interval is denoted as t–boot and it is
expressed as follows:

CI∗t,1−α = (β̂n − τ ∗n,α/2 · ω̂n/
√
n, β̂n − τ ∗n,1−α/2 · ω̂/

√
n), (11)

where τ ∗n,α and τ ∗n,1−α are the estimated α/2 and 1 − α/2 quantiles of the
distribution of τ ∗n , obtained through B replications, previously defined in ex-
pression (7).

3. Simulation Study

In this section we develop a small–scale Monte Carlo exercise consider-
ing just–identified IV model to observe performance of proposed methods
in terms of empirical size of bootstrapped t–statistic and coverage of boot-
strapped confidence intervals introduced in Section 2. We generate 1000

dataset of size n = (50, 100) where yi = βxi + ui; xi = πzi + vi. The
value of β is set equal to zero and first stage coefficient is a function of the
first stage R2

f : π =
√
R2
f (1−R2

f )
−1, where R2

f = {0.1, 0.5} represents two
scenarios in terms correlation between instrument and regressor. The zi is
drawn from N(0, 1) and errors are generated through following probability

law: (ui, vi)
′ ∼ N2(0,Σ). Σ =

(
1 ρ

· 1

)
. Parameter ρ takes values equal

to {0.5, 0.9}, related to moderate and high endogeneity for the explanatory
variable. Number of bootstrap replications is B = 399 and nominal level is
α = 0.05. We use tsls function and random number generator from gretl.
All the analysis are developed using a I7 processor with RAM= 16.0 GB.
Since we generate homoskedastic and uncorrelated errors we do not apply
wild bootstrap methods in this simulation study.
Table 3 contains results regarding empirical size of t/Wald statistics; consider
four different combinations of first stage goodness of fit R2

f and endogeneity
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ρ. Bootstrapped methods always perform better than the asymptotic approxi-
mation, especially with small sample (n = 50) and when instrument is poorly
correlated with endogenous regressor (R2

f = 0.1). Regarding residual boot-
strap, restricted (Resr) presents better size than unrestricted (Resu) when R2

f

is low. In general, parametric (also due to our DGP) and residual methods
outperform the pair one. Table 2 shows coverage of confidence intervals;
percentile and t-boot intervals are indicated respectively with “P” and “t”.
Moreover, bootstrapped confidence intervals can even perform worse than the
asymptotic one in some scenarios. In particular, t–boot confidence sets may
perform badly in case of poor correlation between instrument and endogenous
regressor, while Percentile method associated to Pair bootstrap presents good
coverage even if R2

f = 0.1.

Finally, a slightly analysis of computational costs is summarized in Fig-
ure 1 for a dataset of n = 200 obtained through the same simulation design.
Parametric bootstrap is the fastest method among the proposed ones, while
pair and residual bootstrap present similar computational costs in terms of
seconds. Residual wild bootstrap remains little bit computational demand-
ing, exceeding 1 second for a number of bootstrap replications greater than
B = 800. We remark that computational costs can dramatically increase in
overidentified models, when k > 1.

4. Empirical Application

The seminal paper of Acemoglu et al. (2001) is a well-known example
of instrumental variable estimation in Political Economics. The sample size2

consists of n = 64 ex–European colonies while the outcome variable of in-
terest is the logarithm of income per capita in 1995 (on the purchasing power
parity basis), and the deemed endogenous regressor is an averaged index of
risk protection against government appropriation of assets between 1985 and
1995. Authors suggest to use, as instrument, the logarithm of mortality refer-
ring to European settlers during the colonization period. The simplest model,

2 date are free available at https://economics.mit.edu/faculty/acemoglu/data/ajr2001
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Table 1. Empirical size of t/Wald test for the null β = 0

n = 50

R2 ρ Asymptotic Parametric Pair Resu Resr

0.1 0.5 0.071 0.044 0.077 0.074 0.056
0.1 0.9 0.128 0.066 0.105 0.100 0.068
0.5 0.5 0.068 0.050 0.058 0.067 0.060
0.5 0.9 0.079 0.043 0.065 0.049 0.062

n = 100

R2 ρ Asympt. Param. Pair Resu Resr
0.1 0.5 0.075 0.051 0.089 0.059 0.044
0.1 0.9 0.107 0.061 0.069 0.075 0.060
0.5 0.5 0.059 0.032 0.057 0.049 0.048
0.5 0.9 0.074 0.047 0.068 0.042 0.042

without any control variable, takes the following specification:

yi = α + βxi + ui; xi = τ + πzi + vi

where yi is the logarithm of DGP, xi and zi are respectively the Risk index and
the logarithm of mortality previoulsy discussed, β is the scalar parameter of
interest and π is associated to the instrument. OLS estimate is βOLSn = 0.52

(standard error is 0.061), but there are arguments suggesting endogeneity of
this explanatory variable (Durbin Wu Hausman exogeneity test is equal to
22.24, p.value < 0.001). First stage results, π̂n = −0.607(0.12), F = 22.4

and R2
f = 0.27, show that proposed instrument is relevant, especially be-

cause F statistic exceeds both the critical values of Stock and Yogo (2005)
and the empirical threshold of 10. The estimates of β is β̂IVn = 0.945 (0.157)
and asymptotic confidence interval is (0.637; 1.25). We run a high number
of bootstrap replications B = 99 999 and present results in Table 1 applying
methods of Section 2. We notice that percentile confidence intervals obtained
from the pair bootstrap are wider compared to other methods, while they seem
comparable in terms of length and substantially differs from those obtained
with conventional asymptotic approximation. In fact, Figure 1 shows that the
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Table 2. Coverage of confidence intervals (95%)

n = 50

R2 ρ Asympt. ParP Part PairP Pairt ResP Rest
0.1 0.5 0.960 0.990 0.936 0.959 0.752 0.968 0.939
0.1 0.9 0.907 0.978 0.763 0.973 0.732 0.965 0.798
0.5 0.5 0.954 0.950 0.940 0.932 0.907 0.911 0.948
0.5 0.9 0.947 0.931 0.930 0.933 0.899 0.879 0.932

n = 100

R2 ρ Asympt. ParP Part PairP Pairt ResP Rest
0.1 0.5 0.959 0.980 0.919 0.953 0.813 0.964 0.927
0.1 0.9 0.939 0.945 0.803 0.972 0.794 0.934 0.817
0.5 0.5 0.948 0.947 0.943 0.944 0.935 0.937 0.954
0.5 0.9 0.947 0.938 0.939 0.945 0.941 0.925 0.947

distribution of bootstrap estimator(β̂IV ∗n,1 , . . . , β̂
IV ∗
n,B ), obtained through resid-

ual method, presents some (positive) skewness. The p-value of t-test is minor
than 0.001 for all proposed bootstrap methods, confirming that β is statisti-
cally different from zero. In terms of computational costs, we report time (in
seconds) to compute bootstrap p–value of τ ∗n (CPU) statistics and this value
is less than 30 seconds except for the wild bootstrap case, consistently with
results of Section 3.

Table 3. Bootstrap Inference for Acemoglu et al. (2001)

Method CI∗P,0.95 CI∗t,0.95 p–val(τ ∗n) p–val(τ ∗0,n) CPU(s)

Par.B (0.680; 1.384) (0.716; 1.328) 0.00004 / 12.3
Pair.B (0.695; 1.641) (0.739; 1.402) 0.00013 / 21.1
Res.B (0.709; 1.401) (0.736; 1.341) 0.00003 0.0000 26.7
Wild.B (0.708; 1.403) (0.738; 1,342) 0.00010 0.0000 36.6
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5. Concluding Remarks

In this work we implement bootstrap techniques for IV estimation in Gretl.
These methods can perform better than asymptotic approximation when the
simple size is relatively small, improving especially the empirical size of
t/Wald test. Presented methods can be immediately adapted to partially robust
LIML estimator using function liml instead of tsls. They can also be applied
in presence of m > 1 and in case of control variables in both equations. We
remark that bootstrap may produce misleading results, performing even worse
than conventional asymptotic approximation, when instruments are poorly
correlated with the endogenous regressors (often denoted as “weak”), when
overidentification is severe and when instruments are not completely exoge-
nous. To overcome some of these issues, Davidson and Mackinnon (2010)
introduced new residual–based bootstrap methods producing better perfor-
mance under weak instruments, while Wang and Kaffo (2016) developed a
new bootstrap method, valid even under many instruments. We leave imple-
mentation of these robust methods for further researches.

References

Acemoglu D., Johnson S., Robinson, J.A. (2001) The colonial origins of comparative devel-
opment: An empirical investigation, American economic review, 91(5), 1369-1401.

Davidson R., MacKinnon J. G. (2010) Wild bootstrap tests for IV regression, Journal of
Business & Economic Statistics, 28(1), 128-144.

Freedman D. (1984) On bootstrapping two-stage least-squares estimates in stationary linear
models, The Annals of Statistics, 12(3), 827-842.

Flores-Lagunes A. (2007) Finite sample evidence of IV estimators under weak instruments,
Journal of Applied Econometrics, 22(3), 677-694.

Stock J.H., Wright J.H., Yogo M. (2002) A survey of weak instruments and weak identifi-
cation in generalized method of moments, Journal of Business & Economic Statistics,
20(4), 518-529.

Stock J.H., Yogo M. (2005) Testing for weak instruments in linear IV regression, in Andrews
D.W.K., Stock J.H. (eds.), Identification and Inference for Econometric Models: Es-
says in Honor of Thomas J. Rothenberg., Cambridge University Press, 80-108.

Wang W., Kaffo M. (2016) Bootstrap inference for instrumental variable models with many
weak instruments, Journal of Econometrics, 192(1), 231-268.

Wu C.F.J. (1986) Jackknife, bootstrap and other resampling methods in regression analysis,
the Annals of Statistics, 14(4), 1261-1295.

54



BMA for the GLM in gretl

Riccardo Lucchetti∗ , Luca Pedini∗∗

Abstract: In this article, we lay down the foundations for a gretl function package that pro-

vides Bayesian Model Averaging (BMA) for the Generalised Linear Model via a sampling

technique known as Reversible Jump Markov Chain Monte Carlo (RJMCMC). Implementa-

tion issues are discussed, with a view to ensuring maximum efficiency when the model space

is large, particularly so by exploiting as much as possible the possibility of parallelising the

algorithm vis the Message Passing Interface (MPI) standard. Apart from bringing about a

substantial reduction in computation time, parallelisation also provides an effective way of

checking whether convergence of the Markov chain has occurred.

Keywords: MPI, BMA, Generalised linear model.

1. Introduction

As well known, the Generalised Linear Model (GLM) is a statistical frame-
work that includes as special cases several models widely used in econometric
practice. The distribution of dependent variable is assumed to belong to the
exponential family, with density function f(y):

f(yi) = exp

[
yiθi − b(θi)
ai(φ)

+ c(yi, φ)

]
and that the conditional expectation of yi given a set of k covariates xi, E [yi|xi]
is a continuous transform of a linear combination:

l(E [yi|xi])) = ηi = x′iβ (1)

∗Università Politecnica delle Marche, r.lucchetti@univpm.it
∗∗Università Politecnica delle Marche, l.pedini@pm.univpm.it



Gretl 2019

where l(·) is known as the link function1. Maximum likelihood estimation of
GLMs can be carried out, in a frequentist framework, via Iterative Weighted
Least Squares on the transformed variable zi = ηi + (yi − µi) ∂ηi∂µi

, where the
weights wi are defined as:

wi =

[
∂2b(ηi)

∂η2i

(
∂ηi
∂µi

)2
]−1

The above was adapted in Gamerman (1997) to a Bayesian setup: by using
a normal prior on β ∼ N(m0, V0), then the following sampling scheme can
be used:

1. Set as initialization β0;

2. At the i-th iteration, draw β(i) from the proposal density q(β|β(i−1)) =

N(m(i), V (i)), where:

V (i) = (V −10 +X ′Wi−1X)−1 (2)

m(i) = V (i)(V −10 m0 +X ′Wi−1zi−1); (3)

3. Accept the new draw with probability α(β(i−1), β(i)), defined via a stan-
dard Metropolis-Hastings scheme as:

α(β(i−1), β(i)) = min

[
f(β(i)|y)q(β(i−1)|β(i))

f(β(i−1)|y)q(β(i)|β(i−1))
; 1

]
where f(β(i)|y) ∝ f(y|β(i))f(β(i)) and q(β(i)|β(i−1)) is a normal den-
sity evaluated at β(i) with mean and variance, respectively, equal to (3)
and (2).

The algorithm above makes it possible to sample from the posterior density
of β and study it via simulation.

1 Special cases of l(·) include, for example, the identity function for OLS or the natural logarithm for
the Poisson regression model.
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This extension makes it possible to adapt Bayesian Model Averaging (BMA)
to the GLM via a generalisation of the canonical Metropolis-Hastings ap-
proach.2 Given a set of candidate models M1,M2, . . . ,Mm, the main object
of BMA is the computation of the mixture distribution:

P [β|y] =
m∑
i=1

P [β|Mi, y] P [Mi|y]

and its related moments E [β|y] and V [β|y], where P [β|y] and P [β|Mi, y]

represent respectively the marginalised (over models) and the model specific
posterior distribution of the parameter of interest β, whereas P [Mi|y] the pos-
terior model probability.

Unlike linear models, however, no analytical solution exists for both the
parameter and model posteriors under the standard prior set-up, leading to the
impossibility of applying common MCMC-based BMA3.

2. Reversible Jump Markov Chain Monte Carlo

The solution we adopt here is based on the usage of Reversible Jump
Markov Chain Monte Carlo (RJMCMC) proposed by Green (1995), which
is a modification of the MCMC technique for model exploration where pa-
rameters and models are sampled jointly.

In a Metropolis-Hastings MCMC sampler the parameter of interest drawn
across iterations has fixed dimension: in case of standard MCMC BMA, for
instance, the parameter is a point in the k-dimensional lattice on {0, 1}, rep-
resenting a generic model Mi whose entries are proxies for variable inclusion
(if 1) or exclusion (if 0), given k potential covariates.

RJMCMC, instead, generalises Metropolis-Hastings by allowing to sample
parameters with different dimensions, in our case the couple (Mi, βi), where
Mi is again a point in the lattice, but βi are model specific parameters whose
dimension varies.

2 Implementation of BMA for linear models in gretl is discussed in Błażejowski (2015).
3 Common practice involves the use of maximum-likelihood estimators as proxies for posterior mo-
ments, and the use of Laplace or BIC approximations for posterior model distributions, which is ques-
tionable; see for example Amini et al. (2011).
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In particular, RJMCMC can be briefly described as follows: at each step,
a specification is proposed from a model transitional kernel; the related pa-
rameters are not sampled directly from a proposal distribution, but taken from
previous step via an ad-hoc function. Since the size of the parameter vector
may differ between iterations, a matching variable is used in the following
way4: the transformation function from (βi,Mi) to (βj,Mj) = g(βi,Mi) is

βj = g(βi,Mi, ui) = µj +Bjυ (4)

where B is the Cholesky factor of Vj , µj and Vj the mean and variance of βj
and υ is defined as:

υ =


[RB−1i (βi − µi)]kj if kj < ki

RB−1i (βi − µi) if kj = ki

R

(
B−1i (βi − µi)

u

)
if kj > ki

with k as the number of variables, R a random permutation matrix; the nota-
tion [...]kj indicates the first kj elements of the vector and finally u, a kj − ki
vector of random numbers with density f(), (usually, a standard normal vari-
ate).

The parameter β is taken as a multivariate normal, which gets standard-
ised first, and then corrected via the mean and covariance matrix of the new
model, where equations (3) and (2) can be used for the posterior moment es-
timation. The distributional choice may be objectionable, but Green (2003)
argues that this choice is a good compromise between efficiency of the chain
and simplicity.

The probability of acceptance is:

ρ = min

[
P [βj,Mj|y] q(Mi|Mj)

P [βi,Mi|y] q(Mj|Mi)

|Bj|
|Bi|

G; 1

]
(5)

with P [βj,Mj|y] as the joint posterior distribution for the couple (βj,Mj)

4 See, among others, Green (2003), Green (2009), Lamnisos et al. (2009), Lamnisos et al. (2013).
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and q(Mj|Mi) as the model transitional kernel, where we implicitly assume
its independence from the sampling of β, and:

G =


f(u) if kj < ki

1 if kj = ki

f(u)−1 if kj > ki

As for the prior distributions, we assume normality for the β parameters,

βi|Mi ∼ N(µ0,i, V0,i)

while for the model prior we use a Binomial distribution:

P (Mi) =
k∏
j=1

π
δij
j (1− πj)1−δij

where given k total variables, 0 ≤ πj ≤ 1 is the prior probability that the j-th
variable is significant and δij is an indicator of the variable inclusion.

The algorithm can be summarised as follows (see Lamnisos et al., 2013 ):

1. Set the initial βi for the model Mi, (usually, the full specification).

2. Propose a new modelMj from a transitional kernel q(Mj|Mi) and com-
pute its βj as in (4);

3. Accept the move with probability (5), otherwise propose a resampling
of βi in Mi via one iteration of the Gamerman procedure.

4. Repeat from 2 until convergence.

3. Parallelisation

The issues in parallelising MCMC algorithms are well known: parallelisa-
tion leads to a speed-up in sampling, as long as the convergence rate is fast
and the proportion of burn-in period is small compared to the total amount of
iterations.
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A plausible guideline is provided by Gelman and Rudin (1992), Brooks
and Gelman (1998), who introduce some helpful indices for monitoring the
convergence rate of each chain, and the possible advantages of using addi-
tional CPUs.

However, parallelisation could also be helpful for the exploration of the
parameter space: for example, in the case of a multimodal distribution, a
single chain can get stuck in a local maximum, thereby leaving other regions
of the parameter unexplored unless the number of iterations is enormous; in
these cases, running the MCMC algorithm in parallel instances (possibly with
different starting points) can be an extremely effective technique.

This aspect is quantitatively analysed in Gelman and Rubin (1992) and
Brooks and Gelman (1998). Gelman and Rubin (1992) analyse the scenario
when a univariate random variable x is simulated on in i = 1 . . . c cores over
j = 1 . . . n times, together with X̄ as an unbiased estimator for E [x]. The
between variance B/n and the within variance W are defined as:

B =
n

c− 1

c∑
i=1

(X̄i − X̄)2 (6)

W =
1

c(n− 1)

c∑
i=1

n∑
j=1

(xji − X̄i)
2 (7)

where X̄i = 1
n

∑N
j=1 xji and X̄ = 1

c

∑c
i=1 X̄i, in obvious notation.

The parameter σ2 can be estimated now via5 σ̂2 = n−1
n
W + B

n
, so:

V̂ = σ̂2 +
B

cn
(8)

The Gelman-Rubin convergence measure is given by:

R̂ =
V̂

W
; (9)

5 A correction term due to the sampling variability of X̄ is generally added, i.e. B
cn

This is the variance
of the sample mean X̄ , given by 1

c
times the sample variance of X̄i, B/n.
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where R̂ is close to 1 upon convergence.

Equation (9) can be further improved by taking into account sampling vari-
ability in the variance estimates: Brooks and Gelman (1998) propose

R̂c =
df + 3

df + 1
R̂

where df = 2V̂

V ar(V̂ )

Alternative, more robust, statistics are available, such as the so-called interval-
based R̂ (based on quantiles) and the empirical central moment R̂s (based on
higher-order moments).

An extension in a multivariate set-up is given in Brooks and Gelman (1998),
where a multivariate generalisation of R̂ is proposed: define the matrices

W =
1

c(n− 1)

c∑
j=1

n∑
i=1

(xij − x̄j)(xij − x̄j)
′

B =
n

c− 1

c∑
j=1

(x̄j − x̄)(x̄j − x̄)′

as multivariate versions of (6) and (7); then the new convergence statistics is:

R̃ =
n− 1

n
+
c+ 1

c
λ (10)

where λ is the maximum eigenvalue of W−1B/n.

4. Implementation

The RJMCMC is implemented as a gretl package named bmaglm, com-
posed by several private functions which deal with specific part of the proce-
dure and a main public one. The package provides the user a quite flexible
choice of glm link functions, priors for both parameters and models and model
transitional kernels.

In order to parallelise the Markov Chains, the MPI framework is used (see
Snir et al. 1996); the strategy adopted for identifying and storing information
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into sampled models is based on the representation of each model as a binary
vector (a point in the lattice on {0, 1}), so there is a one-to-one correspon-
dence between models and integer numbers.

In order to construct a compound gretl object whose elements are the sam-
pled specifications, we use a bundle of bundles where each element of the
bundle is a model whose key is the hexadecimal representation of the integer.
The hexadecimal notation is adopted to circumvent potential issues related to
integer precision when the model space is huge.

5. Empirical illustration

In order to illustrate the package, we provide a simple example on the fa-
mous Mroz (1987) dataset: a Probit estimation on female labour force partic-
ipation in 1975. The dataset contains information about 753 women, where
our binary dependent variable is named LFP, which is equal to 1 in case of
labour participation; 0 otherwise.

The set of regressors used is:

• KL6, the number of children under the age of 6;

• WA, wife’s age;

• WE, wife’s education attainments, in years;

• HA, husband’s age;

• HE, husband’s education attainments;

• HW, husband’s hourly wage;

• MTR, marginal tax rate facing the wife;

• UN, unemployment rate in the country of residence;

• CIT, dummy variable - 1 if living in a a large city, 0 otherwise;

• AX, actual years of wife’s previous labour experience.

The output of a standard Probit estimation is the following:
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Model 1: Probit, using observations 1-753

Dependent variable: LFP

Standard errors based on Hessian

coefficient std. error z p-value

--------------------------------------------------------

const 0.238379 0.0523348 4.555 5.24e-06 ***

KL6 -0.813479 0.117719 -6.910 4.83e-12 ***

WA -0.0604316 0.0145616 -4.150 3.32e-05 ***

WE 0.117676 0.0299991 3.923 8.76e-05 ***

HA -0.00364750 0.0141875 -0.2571 0.7971

HE -0.0522828 0.0235334 -2.222 0.0263 **

HW -0.0897814 0.0198192 -4.530 5.90e-06 ***

MTR -5.57322 1.04103 -5.354 8.62e-08 ***

UN 0.00303028 0.0170686 0.1775 0.8591

CIT 0.0555055 0.117783 0.4713 0.6375

AX 0.0693860 0.00752985 9.215 3.12e-20 ***

Mean dependent var 0.568393 S.D. dependent var 0.495630

McFadden R-squared 0.239902 Adjusted R-squared 0.218537

Log-likelihood -391.3541 Akaike criterion 804.7083

Schwarz criterion 855.5730 Hannan-Quinn 824.3039

Let us assume the following set up for the function: a diffuse prior on the
constant term β0 ∼ N(0, 100), a prior on the parameter defined as

βi ∼ N(0, n(X̃i
′
X̃i)

−1)

where n is the total number of observations; X̃i is the matrix of demeaned
regressors in modelMi and a uniform prior distribution for models. The num-
ber of iterations and burn-in are set respectively to 100000 and 10000.
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------------------------------------------------------

Bayesian Model Averaging with Generalized Linear Model

------------------------------------------------------

Overall sampling statistics

mean se pip c_mean c_se

const 0.23710 0.05323 1.00000 0.23710 0.05323

KL6 -0.80971 0.11833 1.00000 -0.80971 0.11833

WA -0.06165 0.00857 0.99981 -0.06166 0.00853

WE 0.09412 0.03687 0.95603 0.09844 0.03156

HA -0.00011 0.00316 0.04889 -0.00230 0.01414

HE -0.01685 0.02706 0.34091 -0.04944 0.02318

HW -0.09045 0.01911 0.99998 -0.09045 0.01911

MTR -5.33488 1.04899 1.00000 -5.33488 1.04899

UN 0.00034 0.00417 0.05039 0.00677 0.01737

CIT 0.00214 0.02820 0.05861 0.03643 0.11099

AX 0.07011 0.00759 1.00000 0.07011 0.00759

------------------------------------

Best specifications (P>0.10):

Model_00000399: P(M|D)=0.527433

const KL6 WA WE HW MTR AX

Model_000003b9: P(M|D)=0.286444

const KL6 WA WE HE HW MTR AX

The columns mean and se identify the model averaging posterior mean and
standard errors, whereas pip is the probability of inclusion, i.e. the number
of times the covariate appears in model specifications. c_mean and c_se are,
instead, the posterior mean and standard errors conditioned on inclusion.

Comparing the two outputs, it is possible to note how the most significant
variables detected by the standard Probit model are identified by the BMA
too, through the probability of inclusion. Not significant ones, instead, have
their coefficients shrunk (according to the pip). The above top specifications
identified, which account for most part of the posterior model probability,
are also the ones recognized as best ones using Frequentist measures such as
Information Criteria.

Finally, in order to ascertain the importance of parallelisation, the same
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Table 1. Parallelisation results

threads c=1 c=2 c=4 c=8
Iterations per core 100000 50000 25000 12500
Elapsed time (sec) 684.467 332.396 201.559 104.618
BG statistic 1.030 1.014 1.021
P (M |D)
Model 399 0.527 0.525 0.520 0.526
Model 3b9 0.286 0.298 0.293 0.287

experiment is run splitting the MCMC iterations6 across 2, 4 and 8 cores: re-
sults are displayed in Table 1. The multivariate Brook and Gelman statistics
of convergence is provided alongside with the posterior model probability of
best models: as can be seen, parallelisation does not affect negatively con-
vergence as the statistics approaches 1 in all the scenarios and the posterior
model probabilities are very similar. As for CPU time, using 4 and 8 cores
leads to a huge improvement, allowing for saving up to the 70% and 80%,
respectively, of the single-threaded case.

6. Conclusion

Reversible Jump Markov Chain Monte Carlo is a valuable instrument for
performing BMA in the GLM. An implementation in gretl is proposed here,
with special focus on the computational aspects: the parallelisation of the
Markov Chain algorithm leads to major improvements in both CPU time and
exploration of model spaces.

6 A flexible burn-in of 10% is assumed.
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Model uncertainty in Propensity Score Matching

Riccardo Lucchetti∗ , Luca Pedini∗∗ , Claudia Pigini∗∗∗

Abstract: Propensity Score Matching (PSM) is a popular approach to evaluate treatment

effects in observational studies. While model selection for the PS estimation is often naive in

practice, the choice of variables in this step is crucial because the related treatment effect esti-

mate is highly dependent on it. We propose dealing with such model uncertainty by Bayesian

Model Averaging (BMA) for the PS model and three different Model Averaging treatment ef-

fect estimators are proposed. We propose an empirical application based on the 2014 Italian

tax credit reform (the so-called “Renzi bonus”). We show that model uncertainty importantly

affects the estimated treatment effects and how the proposed BMA-based estimators help to

drastically reduce it. Both BMA and PSM routines have been implemented in gretl.

Keywords: Propensity Score Matching, Bayesian Model Averaging, 2014 Italian tax credit
reform.

1. Introduction

Since the seminal paper of Rosenbaum and Rubin (1983), Propensity Score
Matching (PSM) has become a standard methodology for treatment evaluation
problems in observational studies, as it offers a plausible solution to compute
the “counterfactual” given the treated units. It is based on building an un-
treated comparison group with observational characteristics X close to the
treated one, i.e. matching treated with untreated units.

In particular, treated and untreated individuals are matched on the condi-
tional probability of being treated given X , i.e. the Propensity Score (PS)
p(X) = p(D = 1|X), where D is the treatment assignment indicator. The PS
is usually obtained by estimating probit or logit models.

The underlying binary choice model, however, is often built devoting lit-
tle attention on the choice of explanatory variables: common routines perform

∗Università Politecnica delle Marche, r.lucchetti@univpm.it
∗∗Università Politecnica delle Marche, l.pedini@pm.univpm.it
∗∗∗Università Politecnica delle Marche, c.pigini@univpm.it
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the estimation using all available covariates (full model), but over-parametrization
may lead to violations to PS assumptions (common support and balancing
condition) as well as to a larger variance of the estimator. Parsimonious mod-
els, on the other hand, are equally problematic: omitting relevant variables
can heavily affect the treatment effect estimator.

Clearly, a problem of model uncertainty arises because different treatment
effects estimates can be obtained according to the possible specifications of
the PS model. We tackle this issue by means of Model Averaging techniques:
Bayesian Model Averaging (BMA) has proven to be the main solution to ac-
count for uncertainty in model selection in the literature, and here we propose
three extension to PSM scenarios.

The proposed methodology is applied to evaluate the economic impact
of the Italian tax credit reform (Decree Law 66/2014), which introduced a
monthly wage increase of about 80e for all employees with an annual gross
income between 8145e and 26000e. A tax reduction is supposed to encour-
age household consumption, however the effectiveness of tax credit policy
is a debated topic in the literature (Shapiro and Slemrod 2003a,b; 2009) In
particular, we replicate the approach proposed by Neri et al (2017), based on
Propensity Score Difference-in-Differences estimation and, in doing so, we
also show that PSM estimates can be quite sensitive to the specification of the
PS model.

2. Model uncertainty in Propensity Score

The idea of model uncertainty in PSM can be easily expressed as follows:
with k variables, 2k binary models are available and we can assume that,
among them, there is one model or a set of models, M∗, that are not known
but reflect all of the desirable conditions and lead to different treatment effect
estimates. We could then average model specific estimates according to a
weight reflecting the model probability to be the closest to reality, with the
benefit of avoiding any choice of a single specification, which can be seen as
a guess about M∗.

With PSM being a “sequential” procedure, which starts with the PS com-
putation, then involves the matching and finally computes the treatment effect,
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we can directly attach the probability of a PS model to the related treatment
effect estimate, so a simple example of a model averaging estimator is

γ̂ =
2k∑
i

γ̂Mi
ωMi

, (1)

where γ̂ and γ̂Mi
identify the model averaging treatment effect estimator and

the model specific treatment effect estimator (related to the Propensity Score
model Mi), respectively; ωMi

is the weight attached to each model.

The Bayesian Model Averaging counterpart of equation (1) is

γ̂ = E(γ|y,X,D) =
2k∑
i

E(γ|y,Xi, D,Mi)P (Mi|Xi, D), (2)

where the model averaging treatment effect is substituted by the posterior
mean of the parameter γ, E(γ|y,X,D) with y as the outcome variable, and
γ̂Mi

by the related model specific posterior mean E(γ|y,xi, D,Mi). Finally,
the weight ωMi

is now equal to P (Mi|xi, D), which is the posterior model
probability of the i-th PS model. Equation (2) represents a model averaging
treatment effect estimator tout court and, depending on howE(γ|y,xi, D,Mi)

is computed, different estimators may be defined.

An alternative approach to equation (2) is the so-called plug-in estima-
tor: PSM is performed in the usual manner (i.e. without explicitly averaging
treatment effects across different models), but instead of computing the PS
on simple probit or logit estimates β̂ of the linear predictor Xβ, the model
averaging posterior mean of the parameter of interest β in the binary model is
used. We define the model averaging posterior mean of β as

E(β|y) =
2k∑
i=1

E(β|y,Mi)P (Mi|y), (3)

where E(β|y,Mi) is the model specific posterior mean.

Since BMA is commonly concerned with linear models, its application to
a binary specification is not obvious. Binary models pose the problem of not
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analytical formulae for both P (Mi|y) and E(β|y,Mi), which make the stan-
dard BMA routines unfeasible. In order to solve the problem, a more general
framework is requested, and the solution proposed exploits the Reversible
Jump Markov Chain Monte Carlo (RJMCMC) design by Green (1995). In
RJMCMC, the parameter of interest β and the related model Mi are sampled
jointly, partially avoiding, in this way, the afore-mentioned problem of ana-
lytical formulae and leading to a more immediate and simpler computation of
P (Mi|y) and E(β|y).

In summary, the Model Averaging treatment effect estimators here pro-
posed are:

• “BMA mean”, which identifies the plug-in estimator based on a propen-
sity score computed via the above model averaging posterior mean;

• “BMA Frequentist”, which is based on equation (2), where the posterior
model probability are provided by the RJMCMC, whereas
E(γ|y,xi, D,Mi) is obtained via the standard treatment effect on the
PS model Mi using simple probit estimation;

• “BMA full”, which exploits (2) as well, but computesE(γ|y,xi, D,Mi)

taking into account the different sampled PS (obtained from the cor-
responding parameter β in the binary model) for each Mi, across the
RJMCMC iterations.

3. Empirical illustration: the 2014 Italian tax credit reform

Tax rebate policies are common stabilizing instruments applied by policy-
makers to reduce the impact of the business cycle, with the particular aim of
inducing an increase in the propensity to consume.

The 2014 Italian tax credit was not an exception from this pattern: ac-
cording to Government estimates, its introduction via Decree Law 66/2014
implied a total transfer of 5.9e billion to households, equal to 0.4% of GDP.
From a technical viewpoint, the reform introduced a monthly wage increase
of about 80e for all employees with an annual gross income between 8145e
and 26000e; eligibility was defined on an individual basis, so that households
could have more than one member benefiting from the bonus.
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The topic of tax rebates in the economic literature is, however, very de-
bated. According to the Life Cycle-Permanent Income Hypothesis, any tran-
sitory policy has not effect on consumption. However, if liquidity constraints
and behavioral factors such as “mental accounting” or “myopia” are consid-
ered, a positive effect may be recovered.

Empirical works are equally divergent: on the one hand, “time series”
approaches based on structural break analyses by Modigliani et al. (1977),
Blinder (1981), and Poterba (1988) show unclear effects of the policy; on the
other hand a “micro-data” analysis approach focused on the treatment effect
estimation recovers positive effects (Wilcox, 1989; Parker, 1999; Souleles,
2002; Johnson, 2006) but, at the same time, shows a high sensitivity to model
specifications (Heim, 2007).

The analysis here proposed belongs to this second strand of literature and,
following Neri et al (2017), a Propensity Score Difference-in-Difference (Bro-
zowski, 2007; Stuart, 2014) approach is used to evaluate the effect of the 2014
tax credit on durables and non-durables consumption. The identification of
the treatment effect with the Difference-in-Difference approach is based on
the common trend assumption, which is often violated in practice.
In such contexts, PSM allows to build treatment and control groups matched
on the basis of the PS, which alleviates potential sources of pre-treatment het-
erogeneity.
Two different datasets from the Survey on Household Income and Wealth
(SHIW) issued by the Bank of Italy are used: cross-section data from the
2014 Survey, containing information about the tax credit; panel data for the
2012 − 2014 period, from which we draw information for the pre- and post-
treatment comparison. The estimation of the PS is performed using a Probit
model based on 4458 households that were simultaneously observed in 2012
and 2014, 864, of which were declared eligible for the bonus.
Following Neri et al (2017), the chosen covariates are mainly sets of dummy
variables which reflect demographic and socio-cultural characteristics as well
as the economic condition such as employment status, income, level of edu-
cation, age, and geographical area of residence1.

1 Individual variables refers to the head of the household.

71



Gretl 2019

Matching is then performed via nearest-neighbor without replacement, with a
caliper of 0.012. The treatment estimates (non-winsorized and winsorized to
the bottom/top at 1%) for monthly food, car and other durables consumption
using the full model are shown in Table 1. Since the effects related to many

Table 1. Full model estimates

Food Cars Other durables
Full Model 2.56/6.19 13.98/3.93 16.64/10.32∗

(21.85/20.53) (22.51/18.70) (10.49/6.24)

explanatory variables turn out to be not statistically significant, performing
the same procedure on only highly significant variables leads to the results
displayed in Table 2. Clearly, a model uncertainty issue appears: Table 3

Table 2. Reduced model estimates

Food Cars Other durables
Only sign. variables 20.25/20.11 25.00/11.07 11.35/9.01

(21.64/20.24) (25.08/20.01) (10.06/6.34)

shows the treatment effects estimates obtained by applying the three Model
Averaging estimators here proposed. All the estimators point toward a posi-
tive treatment effect, but produce different results, in particular “BMA mean”
shows the highest values, whereas “BMA full” the smallest ones; “BMA Fre-
quentist” is halfway between the two. Modifying caliper or data ordering
induces similar conclusions, even though “BMA full” seems to appear as the
most robust to changes as opposed to “BMA mean” which is the most vari-
able.

To further illustrate the problem of model uncertainty, it is possible to
transpose it in terms of the kernel density estimation3 of the treatments: fo-
2 As for the order of units, the choice is the minimum distance order (Austin, 2014). Common support
hypothesis and balancing properties are verified too.
3 A Gaussian kernel is used.
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Table 3. Model Averaging estimates

Food Cars Other durables
BMA (mean) 14.36/17.44 25.00/16.80 17.73∗/13.08∗∗

(21.28/20.19) (24.36/19.53) (9.64/6.40)
BMA (Frequentist) 11.63/12.68 22.75/9.82 13.99/10.36

(22.13/20.92) (26.04/20.53) (10.59/7.04)
BMA (full) 8.05/9.48 19.07/8.63 13.89/10.35

(22.11/20.76) (26.07/20.90) (11.26/7.47)

cusing the attention on food consumption and assuming all models as equally
probable lead to the density function represented with red lines in Figure 1;
introducing, however, a weighing scheme for model specific treatment based
on the posterior model probabilities (blue lines) induces a reduction in the
probability of the “tails” of the distribution. In particular, it is possible to no-
tice how the probability of models with negative treatment effects is strongly
reduced; moreover the distribution becomes clearly peaked around the most
probable specifications leading to a more concentrated distribution.

4. Conclusion

In this article we have explored the effect of BMA in Propensity Score
matching: the choice of variables which should be included in the PS estima-
tion is often ignored, but the consequences can be severe. Model averaging
has been proposed as a plausible solution which avoids problems of miss-
specification; in particular, three different techniques concerning BMA have
been used: BMA mean, BMA Frequentist and BMA full.

Using data from the Bank of Italy SHIW, a similar analysis to the one pro-
posed by Neri et al (2017) for the Italian 2014 tax rebate has been performed,
with the aim of verifying the validity of BMA method: in particular, taking
into account model uncertainty may help to strongly reduce the arbitrariness
in this model choice, where different PS models lead to not negligible differ-
ences in the treatment effect evaluation.
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Figure 1. Kernel density estimation (Gaussian kernel) of treatment effects (food) across
model specification: not using BMA (red) vs. using BMA (blue)

However, to further improve this conclusion additional analyses are re-
quired such as applying different matching methods for PS and devising ro-
bustness checks in a simulated scenario.
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Generalized Dynamic Factor Models.
Estimation and forecasting using gretl

Riccardo Lucchetti∗ , Ioannis A. Venetis∗∗

Abstract: We describe the methods behind a suit of functions - to be incorporated in the DFM

package - that deal with generalized dynamic factor models (GDFM) estimation, forecasting

and construction of impulse response functions. Examples are presented using a widely cited

dataset of 132 U.S macroeconomic time series and a dataset of 81 U.S sectoral labour market

series (employment). Prior to the inclusion of the GDFM functions in the DFM package, all

code (package and example scripts) is available by the authors upon request.

Keywords: Generalized Dynamic Factor Models, GDFM

1. The generalized dynamic factor model - GDFM

The Generalized Dynamic Factor Model (GDFM) as introduced in Forni
et al (2000) and Forni and Lippi (2001) assumes we work with a T × n panel
of observations xi,t, i = 1, ..., n, t = 1, ..., T and admits the form

xi,t = χi,t + ξi,t (1)

χi,t = bi,1 (L)u1,t + bi,2 (L)u2,t + ...+ bi,q (L)uq,t (2)

where χi,t is the “common component” and ξi,t is the “idiosyncratic compo-
nent”, L stands for the lag operator. In vector notation, let xt = (x1,t, . . . , xn,t)

′,
t ∈ Z,

xt = χt + ξt

χt = B (L)ut

The vector ut = (u1,t, . . . , uq,t)
′, t ∈ Z, of “common shocks” is a q-

dimensional unobservable orthonormal white noise process orthogonal to ξt,
∗ Università Politecnica delle Marche, r.lucchetti@univpm.it
∗∗University of Patras, Department of Economics, ivenetis@upatras.gr
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t ∈ Z, that implies χi,t and ξj,t are orthogonal at any lead and lag for all
i, j ∈ N.)

Each common component results from the action of a small number of
q unobserved shocks weighted differently (different lag structures) for each
series xi,t, i = 1, ..., n, t = 1, ..., T .

Initially, in Forni et al (2000), the filters bi,j (L) are one-sided in L, that is,

bi,j (L)uj,t =
+∞∑
s=0

bi,j,s · uj,t−s

and their coefficients {bi,j,s}+∞0 are square summable, i.e.,
+∞∑
s=0

b2i,j,s < +∞.

One-sidedness is necessary for the structural interpretation of (1) and (2).
However, in Forni and Lippi (2001), Forni et al (2004) and subsequent work,
two-sided filters (with square summable coefficients) are allowed without af-
fecting unique determination of the dimension of ut or the reconstruction of
χi,t and ξi,t.

This is an approximate factor model as the idiosyncratic components are
allowed to be weakly cross-correlated.

The model is estimated by employing principal components in the frequency-
domain and an interesting feature is that the common component is allowed
to have an infinite MA representation, so as to accommodate for both autore-
gressive AR, MA and ARMA type responses to common shocks (factors).

As Forni et al (2015) mention: “Apart for some minor features, most fac-
tor models considered in the literature are particular cases of the so-called
Generalized Dynamic Factor Model (GDFM)...”

The estimation problem consists in recovering the unobserved common
and idiosyncratic components χi,t, ξi,t, the common shocks uj,t and the filters
bi,j (L), from a finite realization of the multivariate process xi,t as both the
cross-sectional and time dimensions tend to infinity.

The main GDFM package function is GDFM_Setup (list xlist, int q,

int m, int h, bool cVerbose[0]) with inputs:

xlist : a list with the observable (stationary) variables xi,t, i = 1, ..., n,
t = 1, .., T . Data mean-variance standardization is performed by the
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function;

q : number of assumed static factors; a positive integer (optional; default: 1);

m : covariogram truncation parameter; a positive integer (optional; default:
m = floor(

√
T ));

h : number of frequencies θh at which the spectral density matrix is esti-
mated; a positive integer (optional; default: h = m);

cVerbose : Boolean, print details (optional; default: no)

It returns the model bundle that contains a T×n standardized data matrix:
X, a string array with variable names: Xnames, and a number of useful model
parameters such as T , n, q, m, h, M = 2m+ 1, H = 2h+ 1.

The matlab codes provided by Matteo Barigozzi in his website were ex-
tremely helpful and used not only as a guide to build the code for this sub-
part of the package but also to numerically test the results (see http://

www.barigozzi.eu and http://www.barigozzi.eu/gdfm.zip). Of course,
any errors are our responsibility

2. Two-sided estimation and one-sided estimation and forecasting

The two-sided approach of Forni et al (2000) produces common compo-
nent estimates χ̂2S

i,t =
∑m

k=−mKi,kxt−k and although more efficient than prin-
cipal components (PC) estimation of the factor space (common components)
is not directly suitable for prediction of the observable series as the common
component estimate χ̂2S

i,t deteriorates for t close to 1 or T .
Forni et al (2005) put forth an one-sided estimation procedure to efficiently

(compared to principal components) forecast the observable series through
x̂i,t+h = χ̂1S

i,t+h, h ≥ 1 and as a by-product an estimate χ̂1S
i,t of the common

components is also obtained.
Both, χ̂1S

i,t and χ̂1S
i,t+h are consistent in the sense that, as the cross-section

size n and the number of time observations T tend to infinity, the estimate
χ̂1S
i,t converges to χ1S

i,t and the predictor χ̂1S
i,t+h tends in probability to the

population-optimal predictor.
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In matrix notation, let B(L) = C(L)[D(L)]−1, where C(L) = C0 +

C1L + · · · + CsL
s is an n × q matrix polynomial in the lag operator L with

finite maximum s > 0 and D(L) = Iq−D1L−· · ·−DSL
S is a q× q matrix

polynomial with S < s+ 1.

If we denote by ft the dynamic factors generated by the q dynamic shocks,
ft = [D(L)]−1ut or D(L)ft = ut and xt = C(L)ft + ξt.

Now, by letting Ft =
(
f ′t, f

′
t−1 . . . f

′
t−s
)′ and C = (C0 . . .Cs) we obtain a

static factor model
xt = C · Ft + ξt (3)

with r = q (s+ 1) static factors Ft with spectral density of rank q.

The one-sided estimator of FHLR05 produces χ̂1S
t = Ĉ · Ft and its h−

steps ahead forecast χ̂1S
t+h.

The following example script is part of the largest example script avail-
able upon request GDFMexamples_Estimation_FHLR00_FHLR05.inp and it
is based on the Stock and Watson (2005) dataset of 132 U.S macroeconomic
series. It can serve as a starting point for those interested in the previously
described procedures:

clear

set verbose off

include GDFM.inp

# See Table 1 and section 6 in Bai and Ng (2013)

open sw2005datatC.gdtb -q

list L1 = CES002c IPS10c sFYGT1c

list L2 = dataset

list xlist = L1 || L2

q = 3

verbocity = 1

# Setup

bsetup = GDFM_Setup(xlist, q, , , verbocity)

bFHLR00 = GDFM_FHLR00(&bsetup)

bFHLR05 = GDFM_FHLR05(&bsetup)

80



R. Lucchetti and I. Venetis, Generalized Dynamic Factor Models in gretl

3. Unrestricted estimation

In Forni et al (2015) and Forni et al (2017) the most general approach is put
forth. In detail, without loss of generality and for the simplicity of notation,
assume, that n is an integer multiple of (q+1), that is, n = m(q+1) for some
m ∈ N and let χn,t = (χ1,t, χ2,t, · · · , χn,t)′.

The “unrestricted” GDFM (vector notation) is given by

xn,t = χn,t + ξn,t

χn,t = B (L)
n×q

un,t

where B (L) is a rational square-summable one-sided filter and un,t is or-
thonormal white noise.

Under the assumptions in Forni et al (2015), there exist an m(q + 1) ×
m(q + 1) block-diagonal matrix of one-sided filters An(L) with m diagonal
blocks A(i)(L) of dimension (q + 1) × (q + 1) such that the VAR operators
A(L) = (In −An(L)) are fundamental for χn,t

A(L)χn,t = Hnun,t (4)

with Hn = (H1′
n , · · · ,Hm′

n )
′ is a full-rank m(q + 1) × q matrix of constants

and sub-matrix Hm
n is (q + 1)× q.

Pre-multiply the observations vector with A(L) = (In −An(L)) and let
A(L)xn,t = yn,t, then a static factor model is obtained (for yn,t)

yn,t = Hnun,t + A(L)ξn,t (5)

The corresponding package function provides parameter estimates B̂ (L) =

[Â(L)]−1 · R̂ · Ĥq (IRF’s), shocks ûn,t, common components

χ̂URt = B̂0 · ût + B̂1 · ût−1 + B̂2 · ût−2 + · · ·+ B̂19 · ût−19

and forecasts for the common components at horizon h

χ̂URT+h = B̂h · ûT + B̂h+1 · ûT−1 + B̂h+2 · ûT−2 + · · ·
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The following extract from the example script GDFMexamples_FHLZ17.inp
is based on the Stock and Watson (2005) dataset of 132 U.S macroeconomic
series and can serve as a starting point for those interested in the previously
described method. The full script includes (among others) a plot of estimated
impulse response functions of the first three target variables to a shock in the
first or more dominant factor.

clear

set verbose off

include GDFM.inp

open sw2005datatC.gdtb -q

list L1 = CES002c IPS10c sFYGT1c

list L2 = dataset

list xlist = L1 || L2

q = 3

p = 2 # Number of VAR lags

verbocity = 1

bsetup = GDFM_Setup(xlist, q, , , verbocity)

bFHLZ17 = GDFM_FHLZ17(&bsetup, p, , ,)

4. Choosing the number of dynamic factors

Finally, the package includes two functions that produce summary statis-
tics (a scree plot and a factor variance contribution plot across frequencies) as
well as the Hallin and Liška (2007) information criterion approach to deter-
mine the number q of common shocks in GDFM settings. The following two
scripts,

GDFMexamples_summary.inp

and

GDFMexample_Hallin_Liska_2007.inp

produce a number of plots that aid researchers in their initial GDFM specifi-
cation quest. In this example, we consider the 81 U.S sectoral employment
growth series employed by Fiorentini et al (2018) as our data panel,
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clear

set verbose off

include GDFM.inp

open Labor.gdt -q

list xlist = dataset - CES0000000001

q = 3

m = floor( 0.75*sqrt( rows({xlist}) ) )

h = m

plotoption = 1

bsetup = GDFM_Setup(xlist, q, m, h, plotoption)

bsummary = GDFM_summary(&bsetup)

while the Stock and Watson (2005) dataset is utilized in the last example,

clear

set verbose off

include GDFM.inp

set seed 333888333

open sw2005datatC.gdtb -q

smpl full

list xlist = dataset

scalar qmax = 8 # Upper bound on the number of dynamic shocks

scalar plotoption = 1 # Set 1 to display plot(s)

bsetup = GDFM_Setup(xlist, , , , plotoption)

bHL2007 = GDFM_HL2007(&bsetup,qmax)

5. Conclusions and future developments

The set of scripts we presented here reproduce most of the methods that
Forni, Hallin, Lippi and various co-authors have been proposing over the past
years. It remains to be seen whether these function will be integrated into
the existing package DFM, which deals with dynamic factor models estimated
in the time domain rather than in the frequency domain, or will have to be
packaged as a standalone entity.
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Benchmarking and temporal disaggregation with related
indicators in gretl

Alberto Maronilli∗ , Tommaso Di Fonzo∗∗

Abstract: Benchmarking (Denton, 1971) and temporal disaggregation with related indicators
(Chow and Lin, 1971) are well established statistical procedures, available in both commer-
cial and free econometric software. The 2019c release of Gretl does not support Denton’s
benchmarking and performs temporal disaggregation according to Chow and Lin in a limited
way, returning poor and debatable results. In this paper the two procedures are described and
the chowlin() command of Gretl is critically reviewed. Then the function package tbench is
presented, which allows Gretl users to perform benchmarking and temporal disaggregation
in a more effective way.
Keywords: Time series, Benchmarking, Temporal disaggregation

1. Introduction

In time series analysis, temporal benchmarking consists in adjusting a pre-
liminary, high frequency time series to have temporal consistency with a lower
frequency version of the same variable, usually measured from a different
data source (Dagum and Cholette, 2006). This statistical procedure is used
to correct inconsistencies between two different estimates by combining (and
preserving as much as possible) (i) the dynamic profile of the preliminary
(unbenchmarked) time series, and (ii) the levels of the low-frequency bench-
marks.

Temporal disaggregation is strictly related to, and in fact generalizes, bench-
marking, since high-frequency estimated data are derived from low-frequency
ones and, if available, one or more related high-frequency series.

In both cases, however, given a ’low’ frequency (annual, quarterly) ob-
served time series, the ’high’ frequency (quarterly, monthly) series has to
be estimated and the result must be coherent with the available temporally
aggregated data. According to Chow and Lin (1971), depending on the na-
ture of the variable to be disaggregated we refer to temporal disaggregation
∗ University of Padua, alberto.maronilli@studenti.unipd.it
∗∗University of Padua, tommaso.difonzo@unipd.it
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as either distribution of flows or averages (indices) or interpolation of stock
variables. A strictly related issue to be considered in this framework is the ex-
trapolation, that is the estimation of high frequency figures when the relevant
low-frequency observation is not observed (for example, in the course of the
current year, when the annual benchmark is not yet available).

In literature there is a variety of well established procedures to deal with
benchmarking and temporal disaggregation of time series (Chen et al 2018,
and the references therein). For space reason, in this paper the focus is on the
Modified Denton Proportionate First Differences (PFD) procedure (Denton,
1971, Cholette, 1984), and on the regression-based temporal disaggregation
procedure by Chow and Lin (1971). In fact, these two procedures are the most
widely used by data producers and statistical agencies (IMF, 2017, Eurostat,
2018). However, the package tbench for Gretl offers other benchmarking
procedures as well.

2. Notation

In the description of the procedures, the following notation is used:

s : number of high-frequency values for each benchmark value (aggregation
order: s = 3 if quarterly data is to be converted into monthly values, s = 4 for
annual-to-monthly estimation, and s = 12 for the annual-to-monthly case);

n : number of high-frequency periods;

N : number of low-frequency periods. It is usually assumed n = s · N (i.e.,
the low frequency and the high-frequency periods exactly cover the same time
span). When n > s · N we face benchmarking/temporal disaggregation and
extrapolation;

yt : the unknown high-frequency series to be estimated, t = 1, . . . , n;

y0T : the known low-frequency benchmark series of the variable of interest,
T = 1, . . . , N ;

pt : the known preliminary high-frequency series (to be used in benchmark-
ing), t = 1, . . . , n;

86



A. Maronilli and T. Di Fonzo, Benchmarking and temporal disaggregation in gretl

xj,t : the related high-frequency series (to be used in temporal disaggregation),
j = 1, . . . , q, t = 1, . . . , n.

The temporal aggregation constraints between the target variable and the
available benchmark can be expressed in matrix form as

y0 = Cy (1)

where y0 and y are (N ×1) and (n×1) vectors, respectively, and the (N ×n)

matrix C takes different forms depending on the case we are dealing with:

Cdistribution =


1 1 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 1 1 · · · 1 · · · 0 0 · · · 0
...

... . . . ...
...

... . . . ... . . . ...
... . . . ...

0 0 · · · 0 0 0 · · · 0 · · · 0 1 · · · 1


Cindex =

1

s
Cdistribution

Cinterpolation =


0 0 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 0 0 · · · 1 · · · 0 0 · · · 0
...

... . . . ...
...

... . . . ... . . . ...
... . . . ...

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 1



Cextrapolation =

 0 0

Cdist/ind/inter ...
...

0 0


3. Modified Denton PFD benchmarking

The adjusted (benchmarked) estimates are obtained according to a move-
ment preservation principle on proportional levels, which is considered a good
approximation of the ’true’ movement preservation principle, based on the
growth rates (this issue is discussed by Di Fonzo and Marini, 2012).

Following the proposal by Cholette (1984), where the first differences are
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correctly calculated, the modified Denton’s PFD benchmarked estimates are
the solution to a linearly constrained quadratic optimization problem, where
a loss function given by the sum of the squared first differences of the propor-
tional adjustments is minimized with respect to yt:

n∑
t=2

(
yt − pt
pt

− yt−1 − pt−1
pt−1

)2

≡
n∑
t=2

(
yt
pt
− yt−1
pt−1

)2

. (2)

Using matrix notation, the problem can be stated as

min
y

(y − p)′M(y − p) s.t. y0 = Cy, (3)

where M = p̂−1∆′∆p̂−1, p̂ = diag(p) is a diagonal (n× n) matrix, and ∆ is
the (n− 1× n) first difference matrix:

∆ =


−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · −1 1

 .
The PFD benchmarked estimates are contained in the (n × 1) vector yPFD,
solution to the linear system (Di Fonzo and Marini, 2012)[

M C ′

C 0

] [
yPFD

λ

]
=

[
0

y0

]
, (4)

where λ is a (N × 1) vector of Lagrange multipliers.

4. Chow and Lin regression-based temporal disaggregation

This procedure assumes a regression model with stationary AR(1) distur-
bances between the true (and unobserved) high frequency observations yt and
a set of related series observed at the same ’high’ frequency, x1,t, ..., xq,t:

yt =
∑q

j=1 βjxj,t + ut
ut = ρut−1 + εt, |ρ| < 1.

(5)
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This model can include ’true’ related series (indicators) and deterministic
effects as well, whose combination is used to estimate the high-frequency
dynamic profile of the target variable.

Since yt is unobserved, model (5) cannot be estimated. In order to derive
the Best Linear Unbiased Estimator (BLUE) of the unknown yt’s in line with
the benchmarks y0T ’s, Chow and Lin (1971) considers the temporal aggrega-
tion of model (5),

y0T =

q∑
j=1

βjx0j,T + u0T , (6)

where x0j,T is the j-th temporally aggregated indicator series, and u0T is the
result of the temporal aggregation of the high-frequency AR(1) disturbances.

In matrix notation, denote X the (n × q) matrix containing the q high-
frequency related series, X0 = CX its temporally aggregated counterpart, V
the (n × n) covariance matrix of the AR(1) vector of disturbances u, and β
the (q × 1) vector of the unknown regression coefficients. If ρ was known,
matrix V would be known up to a multiplicative factor (the variance of the
white noise εt). In this case Chow and Lin (1971) show that the BLUE of the
high-frequency series y in line with the benchmark y0 is given by:

ŷ = Xβ̂ + V C ′V −10 (y0 −X0β̂) (7)

where V0 = CV C ′ and β̂ = (X ′0V
−1
0 X0)

−1X ′0V
−1
0 y0.

The estimated series consists of two components: the former coming from
the regression (Xβ̂) and the latter from the residuals of the auxiliary tempo-
rally aggregated regression model (6) smoothed through matrix V C ′V −10 .

Chow and Lin (1971) propose to estimate the autoregressive parameter ρ
exploiting the relationship between this parameter and the first order autore-
gressive coefficient of the temporally aggregated disturbances. This relation-
ship is indeed invertible in (−1, 1) in the quarterly-to-monthly disaggregation
case, which is considered by Chow and Lin in their paper, but unfortunately
this is not true in general. For example, this relationship is not invertible in
the annual-to-quarterly case (Bournay and Laroque, 1979), making this esti-
mation procedure unfeasible for the purpose in hand.

The generally adopted solution is to estimate ρ and β through either Max-
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imum Likelihood (assuming gaussian white noise εt) or Feasible Generalized
Least Squares, where ρ can be easily estimated through simple numerical
procedures. Furthermore, it is generally recognized that, to better preserve
the original movements of the related series and to avoid introducing spurious
fluctuations in the final estimated values, only positive values of ρ should be
looked for (i.e., ρ ∈ [0, 1)).

5. The chowlin() function

In the 2019c release of Gretl the chowlin() function performs temporal
disaggregation of a time series using related indicators. It is our opinion that
this function, which is also called for by Gretl when the user wishes to expand
the dataset to a higher frequency, suffers some limitations and problematic
issues.

More precisely, (i) chowlin() supports only temporal disaggregation of an
index variable, while flows variable (obtained as sum of the high-frequency
values) and stock variables are not considered options, (ii) extrapolation is
not supported, and (iii) the only considered time conversions are annual-to-
quarterly (s = 4) and quarterly-to-monthly (s = 3), while annual-to-monthly
(s = 12) is missing.

Furthermore, at least two issues do not allow the function to perform an
effective temporal disaggregation of the target series: (i) the inclusion of two
deterministic variables (both linear and quadratic trends) in the x’s of the re-
gression model (5), and (ii) the estimation procedure of ρ.

As for the forced inclusion of two deterministic trends as regressors, the
user of the function chowlin() cannot discard any or all of three deterministic
variables (constant, linear and quadratic trend), even when a ’true’ related
series is used. This seems inappropriate since the variables to be included as
regressors should depend on the features of the target series, and the decision
to include either a linear or a quadratic trend should be left to the user only.

The estimation procedure for ρ raises two concerns: (i) it is based on
the original proposal by Chow and Lin (1971), whose weakness (possible
non-invertibility of the relationship between ρ and its temporally aggregate
counterpart) has been stressed in section 4, (ii) by default the search range
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Figure 1. Results of the temporal disaggregation of a simple series using
chowlin() without related indicators

is (−1, 1): since the user cannot manage this option, this fact could create
unpleasant (and sometimes counterintuitive) results.

This last drawback is shown in figure 1, which reports the quarterly esti-
mates produced by chowlin() for a very simple annual benchmark (y0t which
consists of the values 500, 400, 300, 400, 500): in absence of related series
which suggest short-term movements of this kind, the noticeable fluctuations
in the disaggregated series yt are an unjustified artifact caused by a negative
estimate of ρ.

6. The tbench package

Grounded on the considerations made so far, the tbench package comes
with some new and distinctive features aimed at improving the benchmarking
and temporal disaggregation procedures offered by Gretl:

• The values of the benchmark series to be disaggregated can represent
the sum or the average of the disaggregated values (flows variable) or
the first or the last element of the subperiods (stock variable).

• tbench offers the choice between different aggregation orders (s = 3,
s = 4, s = 12).
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Figure 2. Results of the temporal disaggregation of a simple series using the
Chow and Lin procedure implemented in the tbench package (a constant and
an index variable are used as related indicators)

• Extrapolation is supported.

• Besides the Modified Denton PFD and Chow and Lin procedures, the
user can choose between other simple benchmarking techniques, like
pro-rata benchmarking and the additive first and second differences
variants of the Denton’s benchmarking procedure.

• tbench offers a series of graphs useful to get a visual inspection of the
results, in order to appreciate the adequacy of the chosen benchmark-
ing/temporal disaggregation procedure. For example, the user can look
at the graph of the time series of the growth rates of both the preliminary
and the estimated series, and at their scatterplots.

Figure 2 shows the results of the temporal disaggregation of the simple
benchmark series y0t seen in figure 1 according to the Chow and Lin proce-
dure implemented in tbench, and using a constant and a linear trend (index
variable) as related indicators. It clearly appears that, compared to figure 1,
now the estimated series yt does not present unpleasant short-term fluctua-
tions and has a smooth dynamics, as expected.
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Regarding the implementation of the package, it should be noted that, with
the exception of midas list, in Gretl the user cannot manage series of different
frequencies in the same dataset. Since the focus of the benchmarking is on the
estimated high frequency series, in order to work properly the tbench package
needs a dataset at the same frequency of the preliminary series. In this dataset
the benchmark series must be present in repeated form. This can be easily
obtained (i) by creating a working dataset using the ’true’ (not expanded)
benchmark series, (ii) then by expanding the working dataset by choosing to
repeat the lower frequency values, and finally (iii) by adding the preliminary
or related series to the expanded dataset.

The procedures offered by the tbench package are: naive benchmarking,
pro-rata benchmarking, several Modified Denton variants (additive first differ-
ences, additive second differences, proportional first differences, proportional
second differences), Cholette and Dagum (1994) benchmarking procedure,
Chow and Lin temporal disaggregation with manual selection of ρ, Chow and
Lin with ML estimation of ρ, and the regression based temporal disaggrega-
tion procedure by Fernández (1981).

The package also comes with a set of functions allowing the users to work
with matrix variables, which are more flexible for the user and permit to
perform the original version of the Denton benchmarking procedure and to
choose aggregation orders other than 3, 4 and 12. It is planned to use this
framework in the future to implement other benchmarking and temporal dis-
aggregation procedures.
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Integer Autoregressive modeling: a new gretl routine

Lucio Palazzo∗

Abstract: This paper focuses on a family of observation-driven models for autoregressive

discrete-valued data, called INAR models. The main purpose of the project is to write and

document a set of Gretl Econometric Software functions that perform time series estimation

of one-lagged univariate INAR models with Poisson and Negative Binomial marginals.

Keywords: INAR models, Poisson, Negative Binomial.

1. Introduction

Classical ARMA models, defined for stationary real–valued processes,
show a lot of attractive properties but such models cannot be applied when
the observations are categorical in nature or quantitative but fairly small and
is not possible to approximate them to a continuous distribution, since the
multiplication of an integer by a real number usually results in a non–integer
value. For this reason several models for discrete valued data have been pro-
posed, e.g. high–order Markov Chains of Pegram (1980), discrete autore-
gressive moving average models (DARMA) of Jacobs and Lewis (1983), a
generalized linear model approach for dependent data by Zeger (1988) and
multivariate count time series models by Pedeli and Karlis (2013).
There are two basic approaches to handle non–Gaussian data exhibiting se-
rial dependence: it is possible to distinguish between observation driven and
parameter driven processes. In parameter–driven models, parameters vary
over time as dynamic processes with uncorrelated errors. In an observation–
driven model current parameters are deterministic functions of lagged depen-
dent variables as well as contemporaneous and lagged exogenous variables.
On top of the latter class, Integer Autoregressive (INAR) processes introduced
by Alzaid and Al–Osh (1988) represent the framework from which we depart
to build a new Gretl routine in order to compute MLE of two specific classes
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of one-lagged INAR models.
The rest of the paper is organized as follows. Section 2 briefly describes
INAR(p) models and their main features. Section 3 introduces the proposal
while in Section 4 the effectiveness of the algorithms is illustrated by run-
ning a Monte Carlo simulation and evaluating the computational cost of the
functions. Relevant points of discussion are finally summarized in Section 5.

2. Autoregressive Modeling of Discrete Valued Time Series

One of the possible ways to formulate a well posed model for stationary
sequences of integer–valued random variables consists of replacing the scalar
multiplication by a different operator with similar properties, called Binomial
Thinning operator, introduced by Steutel and van Harn (1979). INAR models
follow this philosophy. Let X a non–negative integer valued random variable
and α ∈ (0, 1) a real constant value. The Binomial Thinning operator is
defined as the random variable such that:

α ∗X def.
=

X∑
i=1

Yi = Y1 + Y2 + . . .+ YX (1)

where the counting series {Yt} are i.i.d. non–negative integer valued ran-
dom variables, independent of X , with range {0, 1} and having probabilities
P ( Yt = 1 ) = α and P (Yt = 0) = 1 − α. This operator is defined as a
random sum of i.i.d. random variables {Yt}, with Yt ∼ Ber(α), independent
of X , such that E(Yt) = α and Var(Yt) = α(1− α).
The random variable defined by thinning operator involves two random com-
ponents: in fact, it represents a stochastic sum of i.i.d. stochastic processes
where X expresses the (random) number of i.i.d. random variables Yi in-
volved into summation. If the process X is deterministic, i.e. X = n, then:

α∗X|(X = n) =
n∑
i=1

Yi = Y1 + Y2 + . . .+ Yn (2)

and, since {Yt} is a sequence of i.i.d. Bernoulli random variables, the bi-
nomial thinning operator, given X , leads to the Binomial Law: the random
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variable given in equation (2) has Bin(n, α) distribution.
Let {εt} be an i.i.d. nonnegative integer–valued process having finite mean
µε and variance σ2

ε and let α ∈ (0, 1). Given the binomial thinning operator
defined in equation (1), a nonnegative integer–valued process Xt is said to be
an INAR(1) if

Xt = α∗Xt−1 + εt (3)

Although there are several ways to define an INAR processes having p ≥ 2

lags depending on the joint distribution among thinning operators, the model
given by Du and Li (1991) is the most studied in literature. INAR(p) models
involve the summations of p mutually independent thinning operations, being
at the same time independent of the innovation process εt.
There is a strong relationship between INAR(p) and classical AR(p) pro-
cesses, in fact they share the same autocovariance structure and belong to
a broader class of conditional autoregressive models (CLAR, see Grunwald
et al. (2000)). Stationarity conditions are satisfied when the the roots of the
polynomial zp − α1z

p−1 − . . .− αp−1z − αp lay inside the unit circle and, in
case of an INAR(1) model, such conditions hold whenever α ∈ (0, 1).
Parameter estimation methods include Yule–Walker (YW), Conditional Least
Squares (CLS) and Conditional Maximum Likelihood (CML). The latter is
based on convolution of the arrivals and the results of each thinning opera-
tion, providing consistency, asymptotic normality and asymptotic efficiency.
Transition probabilities of INAR(1) models correspond to the convolution be-
tween Binomial and innovation’s distributions

P(Xt = xt|Xt−1 = xt−1) =

min{xt,xt−1}∑
i=0

(
xt
i

)
αi(1− α)xt−1−i P(εt = xt − i)

(4)
Then, using the above formula it is possible to compute the conditional like-
lihood function as

L(θ;X|X1) =
T∏
t=2

P(Xt|Xt−1) (5)

where θ is the vector of parameters to be estimated and X = {X1, . . . , XT}.
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In this framework the Poisson distribution plays an important role: an INAR(1)
is distributed as a Poisson if and only if innovations process has a Poisson dis-
tribution, cf. McKenzie (1985). Unfortunately this relationship holds only in
this specific case. In particular, given an INAR(1) process with Negative Bi-
nomial marginal distribution, Leonenko et a. (2007) proved that innovation
process follows a not common random variable called Negative Binomial-
Geometric.
Aside from the thinning parameter α, the other values involved in an INAR(1)
model depend on the innovation process. In a P-INAR(1) model there is only
an additional parameter, λ, corresponding to the average number of events oc-
curring in a specific interval. Besides, an NB–INAR(1) process requires the
estimation of γ, operating as shape parameter, and β, a scale parameter.

3. Poisson and Negative Binomial Marginals: Discussion and Proposal

Poisson distribution is one of the most widely–used counting processes
presenting several unique features, especially in an INAR framework. How-
ever, in real data applications overdispersion is often encountered for various
reasons and Poisson does not allow for the variance to be adjusted indepen-
dently of the mean, suggesting the use of different processes that may pro-
vide a better fit. Negative Binomial and Poisson distributions have the same
support, that is N0, but the former is more flexible because it includes an ad-
ditional parameter allowing the variance to be greater than the mean, which
often improves model fitting to data. Conditional Maximum Likelihood of a
P–INAR(1) model is relatively simple since the derivation of first order con-
ditions yields to a single equation:

T∑
i=2

xt = α

T∑
i=2

xt−1 + (T − 1)λ (6)

Estimates are obtained making explicit either α or λ in equation (6), substitut-
ing them in first order conditions and iterating the resulting equations. How-
ever, for the NB–INAR(1) CMLE can only be found via numerical global
optimization since no closed–form solution is available. Part of the proposal
involves the discovery that the probability mass function of the innovations
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can be reduced as terms of the Hypergeometric function, as follows:

P(εt = k) =
∞∑
i=0

(
i+k−1
k

) (
β

β+α

)i (
α

β+α

)k
·
(
γ+i−1

i

)
αγ(1− α)i

= γαγ
(

α
β+α

)k
(1− α) β

β+α 2F1

(
γ + 1, k + 1, 2, (1− α) β

β+α

)
for all k ∈ N0, where 2F1(·) is the Hypergeometric function defined as the
sum of hypergeometric series.

Algorithm 1.

Poisson and Negative Binomial INAR(1) Parameter Estimation

1: Input
2: X . Data
3: par0 . Starting Parameters
4: procedure COND.PROB(param, Xt, Xt_1) . Transition Probabilities
5: alpha ← param[1] . Thinning Parameter
6: M ← xmin(Xt, Xt_1)

7: jj ← seq(0,M)’

8: p1 ← pdf(b, alpha, Xt_1, jj) . pmf of Binomial r.v.
9: p2 ← pdf( innovations, param, Xt-jj) . pmf of Innovations

10: ret ← p2’p1

11: return ret

12: end procedure
13: procedure LOGLIK.FUN(par,X) . Objective function
14: n ← £nobs

15: cond_prob ← mshape(NA, n, 1)

16: for t = 2 . . . T do
17: cond_prob[t]← COND.PROB(par, X[t], X[t-1])

18: end for
19: return log(cond_prob)

20: end procedure
21: mle LOGLIK.FUN(par0, X) . MLE maximizer

end
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Therefore a set of Gretl Econometric Software functions is introduced in
order to perform time series estimation of one–lagged univariate INAR mod-
els with Poisson and Negative Binomial marginals.

Pseudo code depicted in Algorithm 1 explains briefly the procedure in-
volving the numerical computation of CML estimates related with both P–
INAR(1) and NB–INAR(1) models.

4. Simulation Study

In this section a small–scale Monte Carlo experiment is carried out gen-
erating synthetic data at each step from a P–INAR(1) and an NB–INAR(1)
processes. Then we computed parameter estimates along with their respec-
tive standard errors. Experiments were run with Gretl (2018d) software and
a total of 500 simulations were performed. The setting scheme consists of
fixing the α parameter at value α = 0.7, letting vary the series length in
n = 200, 400, 800. The P–INAR(1) case is depicted in table 1, while for the
NB-INAR(1) model the scale parameter β is fixed and γ varies in {5, 10},
as shown in table 2. In conclusion, in figure 1 is depicted a summary of
the computational cost of both the CML procedures. Conditional Maximum
Likelihood estimation of model parameters is performed in each replication
and in each table are compared Monte Carlo mean, Monte Carlo standard
error and standard deviation of the Monte Carlo mean. In the Negative Bi-
nomial case Nelder Mead simplex method has been adopted as procedure to
find the maximum value of the log–likelihood. When γ = 5, the mean of
estimated parameters of the NB–INAR(1) are close to the true values and, as
expected, the bias reduces when sample size increases. The same happens
with the mean of estimated standard error and the Monte Carlo standard de-
viation, for each parameter the two estimates are close each other. But it is
worth to notice that the γ estimator produces high standard errors in each set-
ting and, in general, Conditional Maximum Likelihood estimator shows an
evident bias for the parameter γ with increasing values, even with large sam-
ple sizes. This case is related to distributions with a probability concentration
far from the left boundary of the support, thus zero event occurrences are rare.
But, in the same framework, estimation of α and scale parameter β are close
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to the true values and standard errors results are comparable with the other
configurations. Moreover, it follows that when the value of shape parameter
increases, the skew of the marginal distribution changes less and less while
the low count events become very rare.

Table 1. Monte Carlo summary of CML estimates, P–INAR(1) model.

α λ α λ α λ
True Parameter 0.7 1 0.7 3 0.7 5

n=200
MC mean 0.6989 1.0071 0.6986 3.0172 0.6970 5.0136
MC s.d. 0.0353 0.1186 0.0316 0.3215 0.0312 0.5210
s.d. MC 0.0337 0.1187 0.0317 0.3244 0.0313 0.5286

n=400
MC mean 0.6981 1.0051 0.7008 2.9837 0.6986 5.0163
MC s.d. 0.0241 0.0837 0.0224 0.2187 0.0208 0.3481
s.d. MC 0.0236 0.0835 0.0221 0.2251 0.0219 0.3690

n=800
MC mean 0.6985 1.0060 0.6990 3.0045 0.6996 5.0059
MC s.d. 0.0170 0.0601 0.0154 0.1612 0.0154 0.2616
s.d. MC 0.0166 0.0586 0.0156 0.1588 0.0153 0.2595

Table 2. Monte Carlo summary of CML estimates, NB–INAR(1) model.

α γ β α γ β
True Parameter 0.7 5 2 0.7 10 2

n=200
MC mean 0.6966 5.4446 2.1871 0.6978 10.4605 2.1027
MC s.d. 0.0301 2.2843 0.9135 0.0322 3.2153 0.6625
s.d. MC 0.0315 2.2848 0.9029 0.0309 3.8199 0.7644

n=400
MC mean 0.6982 5.1203 2.0641 0.6999 10.2773 2.0509
MC s.d. 0.0235 1.3345 0.5470 0.0231 2.5169 0.5039
s.d. MC 0.0220 1.2826 0.5200 0.0224 2.3679 0.4718

n=800
MC mean 0.6988 5.1733 2.0667 0.6979 10.0901 2.0185
MC s.d. 0.0152 0.8362 0.3387 0.0168 1.9481 0.3928
s.d. MC 0.0155 0.8863 0.3546 0.0166 1.7098 0.3399

Maximum of the log–likelihood function lies in a flat–top parabolic plateau
that is sloping towards larger values of both γ and β parameters and, even
though this valley may be easy to find, convergence to the global maximum
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is difficult. For this reason the use of a derivative–free optimization algorithm
such as the Nelder Mead has been adopted. When true value of γ is low, the
size of the plateau is modest and optimization methods are still capable to find
the maximum with enough precision. But with high values of γ the plateau
enlarges drawing a flat area having elliptical contour.

 0

 0,02

 0,04

 0,06

 0,08

 0,1

 0,12

 0,14

 0,16

 100  200  300  400  500  600  700  800  900  1000

M
in

u
te

s 
(m

)

Sample Size (n)

NB-INAR(1)
P-INAR(1)

Figure 1. Process time of CML estimators of Poisson and Negative Binomial
INAR(1) processes over increasing sample size.

5. Concluding Remarks

In this paper a set of Gretl Econometric Software functions that perform
time series estimation of one–lagged univariate INAR models with Poisson
and Negative Binomial marginals has been introduced.

The NB–INAR(1) is a suitable process to model overdispersed and zero
inflated data but, due to the presence of a flat plateau, optimization methods
lack of precision in finding the maximum value when the true parameter γ is
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higher than 10. However, a large shape parameter is unrealistic in a context
of low counts and could be seen as a signal of a degenerate solution.

When innovations are generated from a Poisson then the estimation algo-
rithm is relatively fast since it consists on the convolution between a Binomial
and a Poisson random variables. At the contrary, the higher execution time re-
lated with the computation of the NB–INAR(1) innovations probability mass
function slows down the main algorithm.

Acknowledgements: Author would like to thank professors F. Di Iorio and R. Lucchetti for
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The “Calzolari” package (1.0 version)

Giulio Palomba∗

Abstract: The Calzolari.gfn package for Gretl is designed to produce special time

series. Specifically, given a set of k explanatory variables X1, X2, . . . , Xk and k coefficients

associated to them, it is possible to create a dependent variable y in order to obtain an estima-

tion output where all coefficients are those previously assigned by the user. The explanatory

variables can be lagged variables or deterministic time trends. The generation of the depen-

dent is possible through an unusual application of indirect estimation calibration algorithm.

The aim of the package is to generate as quickly as possible a large number of different data

sets with different expected estimation results. This practice could be very useful especially

for didactical purposes because it can provide to each student a different exam text.

Keywords: Round numbers, Indirect inference, Calibration.

1. General remarks

The Calzolari.gfn package for Gretl could be a useful tool to create
special data sets that can be used in econometric exams and sometimes in
simulations. The main characteristic of these data sets is returning estimated
parameters which all were previously decided by the user.

Nowadays, several examiners use of Monte Carlo methods to generate
exam datasets in order to obtain an exam version customized for each stu-
dent; thus, students are forced to solve individually the assigned exercises
and, maybe, they do not copy from someone sitting nearby. Time series with
a known data generating process (hereafter, DGP) sometimes could also be a
useful tool in scientific activities, especially in simulations.

The package is named Calzolari because it is inspired by Calzolari (2017),
an article where the author illustrates an indirect estimation calibration algo-
rithm and provides some examples where the method is applied to several
econometric models. Professor Giorgio Calzolari is the one who have intro-
duced this type of data sets in teaching activity and Econometrics exams. He
∗Università Politecnica delle Marche, g.palomba@univpm.it
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proposes some calibration algorithms, typical of indirect estimation methods,
that solve the issue of student’s initial random errors and reduce evaluation
bias. In practice, such procedure allows students to evaluate if their initial esti-
mates were carried out correctly, since the obtained numbers should be round.
Moreover, students can immediately correct their initial estimates when the
results are not round numbers, thus reducing any possible evaluation bias.

The 1.0 version of the package is able to generate dependent variables for
the following univariate time series models:

1. linear dynamic regression models (OLS, DL or ADL),

2. linear time series models (ARMA or ARMAX),

3. regression models with conditional heteroskedasticity (GARCH).

The Calzolari.gfn package could be used

• within a .gdt data file exploiting the variables included (and also the
sample size),

• in a Gretl script, by simply using the standard nulldata and setobs

commands.

This paper proceeds as follows: section 2 presents all the functions in the
package, section 3 briefly discusses the drawbacks of the calibration proce-
dure, while section 4 provides an example of a time series generation and
finally section 5 concludes with further of improvement proposals.

2. The package

The actual version of Calzolari.gfn package is composed by a public
function and 11 private functions.

2.1. The public function

The public function has the following inputs:
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Calzolar(int Model[1:14:1] {list of the available models},

list Xvars "List of regressors",

matrix Beta "Target coefficients",

scalar se[0.000001::1] "Std. Error of the regression",

int decimals[0:6:3] "Number of decimal digits",

int maxiter[0::0] "if 0: one-shot dataset production

(not adjusted for decimals)")

The return type is a series that consists of the generated time series. This
function has 6 arguments, namely

1. int Model[1:14:1] indicates the time series econometric model. Ta-
ble 1 shows that each number from 1 to 14 corresponds to a differ-
ent model. In several lines in the table the model changes according
the presence of exogenous explanatory variables or lagged explanatory
variables.

Table 1. Econometric models

user’s choice basic model exogenous variables lagged variables
Model=1 OLS on a constant OLS DL(k)
Model=2 AR(1) ARX(1) ADL(1, k)
Model=3 AR(2) ARX(2) ADL(2, k)
Model=4 AR(3) ARX(3) ADL(3, k)
Model=5 MA(1) ARMAX(0,1)
Model=6 MA(2) ARMAX(0,2)
Model=7 MA(3) ARMAX(0,3)
Model=8 ARMA(1,1) ARMAX(1,1)
Model=9 ARMA(2,1) ARMAX(2,1)
Model=10 ARMA(1,2) ARMAX(1,2)
Model=11 ARMA(2,2) ARMAX(2,2)
Model=12 GARCH(1,1)
Model=13 AR(1)-GARCH(1,1)
Model=14 AR(2)-GARCH(1,1)

Table 1 clearly shows that the maximum lag order is 3. This is valid
also for ADL models because k ∈ {0, 1, 2, 3}. The number of lags in
ARMA, ADL and GARCH models could be easily augmented in this
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package but, from the technical point of view, this will increase the
number of the available model specifications. In this context, the ques-
tion that arises is if it is really useful. Hence, a superior limit of 3 lags
can be adequate. This choice is motivated by the fact that, in practice,
a model with 3 lags can be considered sufficiently general. Moreover,
models with a superior number of lags often contain a great amount of
parameters and this “lack of parsimony” makes them not so common
(even rare) in practical situations. For the same reasons, a more strin-
gent limit is adopted for the ARMA and GARCH data generation.
The generated models include the constant, while any other determin-
istic time trend (linear, quadratic, etc.) can be inserted as explanatory
variable. The only exception is the case of GARCH(1,1) models where
time trends lead to severe numerical problems due to “non horizontal-
ity” of the generated dependent variable. It is also possible to spec-
ify the conditional mean of GARCH(1,1) models with exogenous vari-
ables. In this case the stationarity of such variables is obviously re-
quired. Regressors in variance can not be used in the current version of
Calzolari.gfn package.

2. list Xvars is the list of exogenous explanatory variables in the condi-
tional mean equation of all models. As we claimed before, the constant
is mandatory therefore it is excluded from this list. Dummy variables
can be included, as well as lagged variables and time trends. For exam-
ple, a linear trend can be inserted simply using the command time;

3. matrix Beta is the column vector that contains all the parameter val-
ues previously decided by the user. The first element is always the
coefficient associated to the model constant. The order of the following
parameters depends upon the choice made with regard to the econo-
metric model. In particular, if the model includes p lags of dependent
variable (AR or ARMA models), the user should fix the values of the
parameters from the second to the (p + 1)th position. Similarly, if a
moving average of order q is present (MA or ARMA models), param-
eters from the (2 + p)th to the (2 + p + q)th position should be set
by the user. Finally, all the remaing positions from the (3 + p + q)th
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onwards, should fix all the coefficients associated to all the exogenous
explanatory variables contained in the Xvars list;

4. scalar se[0.000001::1] corresponds to the desired standard error
of the regression, must be positive, and the default value is 1. The
estimated S.E. of the regression lies around the value of this scalar.
The only exception is in the case of OLS model without any lagged
variable, where the estimated S.E. of the regression correponds exactly
to the value imposed by the user;

5. int decimals[0:6:3] is an integer that sets the number of decimal
digits in the generated dependent variable. The minimum value is 0,
while the maximum is 6. The default value is 3.

6. int maxiter[0::0] is an integer that sets the grid of increments dur-
ing the calibration phase. The default value is 0, which implies that the
dependent variable is created ‘One-shot’ without any calibration due to
the imposition of a prefixed number of decimal digits. If maxiter is
set to a positive number, the calibration is activated and the dependent
variable is created with a number of decimal digits given by the argu-
ment decimals. The discussion of the calibration algrithm is presented
further in section 3.

2.2. The private functions

The private functions are

1. scalar CheckXLags(strings vn, scalar *laggedseries).
This function calculates the maximum number of lags of any explana-
tory variable. The only input is a a set of strings vn, while *laggedseries
is an address that counts the number of exogenous lagged variables.
It is worth noting that this function requires that all the lagged variables
have to be labelled with the suffix “_1”, “_2” or “_3”, since 3 is the
maximum admissible lag order in the Calzolari.gfn.

2. bundle Bench(int EcModel, list Xvars, matrix Beta,
scalar se, scalar Ndigits, int maxiter)

109



Gretl 2019

This function sets the bundle and the inputs are exactly those of the
public function Calzolar(). The instruction provided by its arguments
are sufficient to set/extrapolate other important objects, as:

- the sample size,

- the number of all exogenous variables (including the constant),

- the possible presence of a linear time trend,

- the estimation method (OLS regression, conditional maximum like-
lihood or GARCH ML),

- the number of ARMA lags (if any),

- the type of data generation (‘One shot’ or calibrated).

Moreover, the bundle defines/initializes other objects used in the pack-
age.

3. series Trunc(series Data, scalar Ndigits)

This function trasforms the data by truncating them into the number of
decimals previously decided by the user. The arguments are the time
series and the number of desired decimal digits, while the output is the
truncated time series.

4. scalar RMSE(matrix ref, matrix target)}

This is a very simple function that calculates the root mean squared
error (herafter RMSE) between the two column vectors provided by
arguments.

5. matrix EstimateModel(series y, list Xvars, string method,
scalar plag, scalar qlag, bool PrintResults)

This function carries out the model estimation. The return type is the
estimated parameter vector, while the inputs are

- the dependent variable (y) generated by the package,

- the complete list of explanatory variables Xvars taken from the
bundle,
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- the estimation method taken from the bundle,

- the ARMA parameters (scalars plag and qlag) taken from the
bundle,

- the boolean PrintResult (if 1, the estimation is printed, 0 other-
wise).

6. series GenrModelError(bundle *B)

This function generates the time series of model errors εt ∼ N(0, σ2).
The argument is the bundle from which it takes the standard error of the
regression (parameter σ) and the number of decimal digits.

7. series OneShotOLS(matrix par, list Xvars, bundle *B)

This function produces a ’One shot’ dependent variable with an unlim-
ited number of decimals. It is the time series that always returns the
desired vector of parameters par and the standard error of the regres-
sion in the estimation output. The inputs are the parameter vector, all
the explanatory variables and the bundle. This function is invoked when
in the public function the input EcModel is set to 1.

8. OneShotTS(matrix par, list Xvars, bundle *B)

This function is similar to OneShotOLS, but it is invoked when EcModel
has an integer value between 2 and 11. Here the estimated standard
error of the regression is approximately the one provided in the pubic
function.

9. OneShotGARCH(matrix par, list Xvars, bundle *B)

This function is similar to OneShotTS, but it is invoked only when
EcModel has an integer value between 12 and 14.

10. series AdjustData(list Xvars, bundle *B)

This function consists in the calibration mechanism that produces the
generated dependent variable with the number of decimal digits im-
posed by the user. The inputs are the list of the exogenous variables and
the bundle, while the return type is a time series adjusted with a limited
number of decimals. The calibration is described in section 3.
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11. scalar Info(bundle *B)

This function is crucial because it publishes all the information about
the choices adopted by the user and provides a preliminary check about
of the feasibility of the data generation. In practice, it compares two
numbers, namely S1 and S2. On the one hand, S1 = 1 + p+ q + k + g

is the total amount of parameters requested by each selected model in
the public function, where p and q are the AR and MA lags, k is the nu-
merosity of all the exogenous explanatory variables (lagged, dummies
and time trends included), and g = 3 is the number of parameters in the
GARCH(1,1) equation. On the other hand S2 is the number of rows in
the parameter vector chosen by the user. The data generation proceeds
only when the equality S1 = S2 holds. Otherwise a warning message
about the discrepancy appears and the data generation does not start.
The return type is a scalar that is 1 when the generation is made and
zero otherwise. The input is only the bundle.

3. Calibration

Sometimes the estimated coefficients obtained from the data sets generated
by the Calzolari.gfn package could be slightly different from the ones pre-
fixed by the user. This inconvenience is avoided when the ‘One-shot’ gener-
ation is performed. In this case the dependent variable is generated with an
unlimited number of decimal digits, which allows the estimated coefficient to
converge to the values previously imposed by the user.

When the user aims to obtain a dependent variable with a prefixed number
of decimal digits, the ‘One-shot’ estimation is modified/adjusted by a calibra-
tion mechanism via the private function AdjustSeries(). The entire mech-
anism of data generation and calibration is carefully described by Calzolari
(2017). It suffices to mention that the calibration proceeds observation-by-
observation, with a very simple grid search algorithm. Specifically:

(a) the procedure starts using the ‘One shot’ generated time series. Once
the model estimation is performed, the “real” parameter vector β is
obtained;
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(b) once the decimal digits in the dependent variable have been reduced to
the prefixed number, the estimation returns β̃0 6= β;

(c) the integer maxiter= m > 0 in public function defines a sequence of
positive integers ranging from −m to m (zero is excluded). If n is the
number of desired decimal digits, the grid of increments is given by the
2m× 1 vector

xm,n = 10−n
[
−m −m+ 1 . . . −1 1 . . . m− 1 m

]
. (1)

The calibration algorithm consists in allpying the 2m increments in
xm,n to all the t = 1, 2, . . . , T observations in the truncated generated
variable in order to calculate the RMSE(β̃t, β). This is a time consum-
ing mechanism that updates the generated series when

RMSE(β̃t, β) < RMSE(β̃τ , β),

with 0 < τ < t. Clearly, the search of the minimum RMSE throughout
the sample is repeated until the equality

RMSE(β̃∗, β) = RMSE(β̃1, β) = RMSE(β̃T , β)

is obtained.

(d) The generated time series y is the one corresponding to the minimum
RMSE, and the final vector of parameters β̃∗ is immediately estimated
and printed.

The procedure often can fail because β̃∗ 6= β happens. In this case, the
generated variable should be discharged and all the generation and calibration
must be repeated. The suggestion is to generate a large number of variables
until the “right” data set is obtained (it is sufficient to insert the public function
inside a loop).

The probability of failure is connected with the user preferences. In partic-
ular, the following choices could be of some help in reducing such probability:

1. augmenting the sample size,
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2. augmenting the number of decimal digits,

3. augmenting the number of iterations (variable maxiter),

4. reducing the number of explanatory variables.

4. An example

Suppose your available data is

periodiciy: 12, maxobs: 836

observations range: 1948:01-2017:08

Listing 2 variables:

0) const 1) indpro 2) unrate 3) infl

where indpro is the american monthly industrial production index, unrate
is the unemployment rate and infl is the monthly inflation rate.

In order to generate the dependent variable, the following intructions are
required:

list X = indpro infl

scalar stderr=1

scalar digits=4

The first instruction sets the list of explanatory variables, the second imposes
a unitary value to the S.E. of regression and the third selects the number of
decimal digits in the model error time series.

As already mentioned in section 2.2, the list could contain, among others,
lagged variables with the proper suffix (i.e. indpro_1, indpro_2, indpro_3)
or a time linear trend (by simply using the Gretl command time)

Once the primary instruction was provided, the user has two possible choices:
‘One-shot’ data generation or calibrated data generation.

4.1. ‘One-shot’ data generation

Suppose that the aim of the user is to produce a ‘One-shot’ generation of
a dependent variable for a standard OLS model with exogenous regressors
given by the list X. First of all the column vector of parameters must be set via
the instruction
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matrix Target={2;0.5;-0.25}

The first parameter is automatically assigned to the model constant, while the
others are those related to the variables contained in X, therefore the estimates
of the OLS model should be exactly

ŷt = 2 + 0.5indprot − 0.25inflt.

The ‘One-shot’ data generation is performed via the instructions

maxiter=0

series y=Calzolar(1,X,Target,stderr,digits,maxiter)

The first assignement sets to zero the lenght of the calibration grid, so
the calibration algorithm can not operate and the data generation is ‘One-
shot’. The second assignement invokes the public function. A time series y is
generated considering the user preferences, namely model 1 (OLS), list X of
regressors, vector Target of parameters, 4 decimal digits in error time series
and ‘One-shot’ estimation (maxiter=0).

The procedure returns the output presented in Table 2 in Appendix.
Figure 4.1 shows that the data description generated dependent variable

(One shot) appears in the .gdt file, associated to the variable y .

‘One-shot’ generation

Figure 1. Updated .gdt file

Basically, the generation output is composed by three parts:

1. general information regarding details of the data generation,

2. the estimated model,
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3. the time elapsed for data generation.

4.2. Calibrated data generation

The calibrated data generation is used when the observations in the depen-
dent variable must have a finite number of decimal digits. In order to produce
an example with the same instructions assigned in section 4.1, it is sufficient
to augment the value of maxiter. For instance, suppose that the following
assignements are given.

maxiter=4

y=Calzolar(1,X,Target,stderr,digits,maxiter)

In this case the package performs the dependent variable generation with the
same inputs used in section 4.1 (OLS model, list X, unit S.E. of the regres-
sion and β =

[
2 0.5 −0.25

]′
). The only difference consists of 4 decimal

digits instead of an unlimited number. This choice triggers a calibration mech-
anism based on a grid search, where the grid is built according to equation (1).
In this example maxiter is 4, hence the grid contains the sequence -0.0004,
-0.0003, -0.0002, -0.0001, 0.0001, 0.0002, 0.0003 and 0.0004 (8 elements).

After several attempts, the output in Table 3, reported in Appendix, is ob-
tained. The calibrated generation output is composed by four parts: the three
parts already seen in Table 2 and one part where Final estimation appears,
followed by

1. iteration is the number of times the grid search is repeated over the
sample,

2. sample observation is the observation number whose increment de-
termines a RMSE reduction,

3. increment is the value of the grid applied to the sample observation,

4. RMSE is the value of the Root Mean Squared Error.

After data generation, the variable y with data description
generated dependent variable with 4 decimal digits appears in the
.gdt file, as shown in Figure 4.2.
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Calibrated generation

Figure 2. Updated .gdt file

As mentioned in section 3, the calibration mechanism is time consuming
and often can fail because the final estimated coefficients are not exactly those
imposed by the user. In this case the dependent variable is unaccurate, and the
user has to discharge the generated variable and proceed with a new variable
generation (a loop is suggested).

The probability of failure is connected with the user preferences. One can
reduce such probability by

1. augmenting the sample size,

2. reducing the number of explanatory variables,

3. augmenting the variance (or S.E),

4. augmenting the number of decimal digits,

5. augmenting the number of increments in the grid.

5. Concluding remarks and further developments

Calzolari.gfn package for Gretl allows to produce special data sets in
order to obtain estimation outputs with previously decided coefficient values.
This is possible for 14 time series models with two types of data generation,
‘One-shot’ and calibrated. In the next future, after fixing eventual bugs, the
package could be enriched: for time series models, it is possible to remove
the maximum lags constraint or to extend the choice to seasonal AR or MA.

Also, as suggested by Calzolari (2017), possible extensions can be
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1. linear regression models for cross section data,

2. linear panel data model with random effects,

3. logit models.

Another improvement is the multivariate generalization of the package: this
is already possible for simultaneous equations (estimation via OLS, 2SLS and
3SLS, see Calzolari, 2017), while for VAR models some promising prelimi-
nary results were obtained.

6. Appendix

Table 2. ‘One-shot’ generation output
===========================================================================

DEPENDENT VARIABLE DATA GENERATION

OLS model: y=2+0.5*indpro-0.25*infl+e,

where y is the dependent variable and e is the error/innovation.

T=836 observations, S.E. of regression=1.

The model includes the constant.

The total amount of other exogenous explanatory variables is 2 (0 lagged).

Dependent variable is generated One Shot.

===========================================================================

One Shot Model Estimation:

OLS, using observations 1948:01-2017:08 (T = 836)

Dependent variable: y

coefficient std. error t-ratio p-value

-------------------------------------------------------------

const 2.00000 0.0831144 24.06 1.49e-97 ***

indpro 0.500000 0.00117064 427.1 0.0000 ***

infl -0.250000 2.58640 -0.09666 0.9230

Mean dependent var 31.11316 S.D. dependent var 14.83771

Sum squared resid 833.0000 S.E. of regression 1.000000

R-squared 0.995469 Adjusted R-squared 0.995458

F(3, 85) 91499.31 P-value(F) 0.000000

Log-likelihood -1184.730 Akaike criterion 2375.460

Schwarz criterion 2389.646 Hannan-Quinn 2380.898

rho 0.025007 Durbin-Watson 1.949693

Time elapsed: 0.00 seconds.
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Table 3. Calibrated data generation output (final attempt)
===========================================================================

DEPENDENT VARIABLE DATA GENERATION

OLS model: y=2+0.5*indpro-0.25*infl+e,

where y is the dependent variable and e is the error/innovation.

T=836 observations, S.E. of regression=1.

The model includes only the constant.

The total amount of other exogenous explanatory variables is 2 (0 lagged).

Dependent variable is generated with 4 decimal digits

using increments from -0.0004 to 0.0004.

===========================================================================

Final Estimation:

iteration=1, sample observation=1, increment=-0.0001: RMSE=6.51336e-07

iteration=1, sample observation=1, increment=-0.0002: RMSE=1.1966e-07

iteration=1, sample observation=2, increment=0.0001: RMSE=2.35012e-08

iteration=1, sample observation=5, increment=0.0001: RMSE=1.49537e-08

iteration=1, sample observation=5, increment=0.0002: RMSE=7.60218e-09

OLS, using observations 1948:01-2017:08 (T = 836)

Dependent variable: y

coefficient std. error t-ratio p-value

-------------------------------------------------------------

const 2.00000 0.0831144 24.06 1.49e-97 ***

indpro 0.500000 0.00117064 427.1 0.0000 ***

infl -0.250000 2.58640 -0.09666 0.9230

Mean dependent var 31.11316 S.D. dependent var 14.83771

Sum squared resid 833.0000 S.E. of regression 1.000000

R-squared 0.995469 Adjusted R-squared 0.995458

F(3, 85) 91499.31 P-value(F) 0.000000

Log-likelihood -1184.730 Akaike criterion 2375.460

Schwarz criterion 2389.646 Hannan-Quinn 2380.898

rho 0.065932 Durbin-Watson 1.865239

Time elapsed: 2.88 seconds.
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Fixed effects in Early Warning Systems:
A penalized Maximum Likelihood approach
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Abstract: Binary panel logit models have proved to be simple and effective tools to build

Early Warning Systems (EWS) for banking crises. But because crises are rare events, the

estimation of EWS does not usually account for country fixed effects, so as to avoid losing

all the information relative to countries that never experience a crisis. I propose a penalized

maximum likelihood estimator for fixed-effects logit-based EWS where all the observations

are retained. I show that including country effects, while preserving the entire sample, greatly

improves the predictive power of EWS with respect to the pooled and standard fixed effects

models. I also consider a dynamic formulation of EWS to separately predict the crisis per-

sistence and entry rates. The bias corrected estimator as well as the Receiver Operating

Characteristic (ROC) curve and the Area Under ROC (AUROC) are implemented in gretl.

Keywords: Banking crisis, Bias reduction, Separation problem.

1. Introduction

Logit models have proved to be simple and effective tools to build Early
Warning Systems (EWS) for banking crises. Their predictive power is em-
ployed to generate accurate out of sample warning signals and their speci-
fication as binary choice models offers a clear interpretation of the drivers
of banking crises (Demirgüç-Kunt and Detragiache, 1998, Davis and Karim,
2008, Caggiano at al., 2016).

When logit-based EWS are built on panel data, permanent country un-
observed heterogeneity could be accounted for and supposedly improve their
predictive power. But because crises are rare events, the estimation of EWS
does not usually account for country fixed effects, so as to avoid losing a siz-
able number of countries in the dataset. This is due to the separation problem,
because of which the Maximum Likelihood (ML) estimator for the intercept
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of a country that never experiences a crisis does not exist and thereby prevents
it from contributing to the estimation. Unfortunately, in general, retaining the
whole sample of subjects excluding the intercepts for those with all zeros (or
ones) in the dependent variable will lead to a biased ML estimator (Heinze
and Schemper, 2002).

In this paper, I propose estimating a fixed-effects logit-based EWS where
all the observations are retained by a Penalized Maximum Likelihood (PML)
approach. The bias reduction technique is after Firth (1993), who defined the
ML estimator as the solution to a modified score function. This approach was
adapted to the separation problem in the binary logit model by Heinze and
Schemper (2002) and recently applied to the prediction of civil wars by Cook
et al. (2018). Under the assumption that every country will experience a crisis
as T →∞, the bias of the ML estimator is reduced from O(T−1) to O(T−2),
where T is the number of time occasions.

By using an unbalanced panel dataset of 129 countries from 1982 to 2017
and by defining crises events as in Laeven and Valencia (2018), I show that in-
cluding country effects, while preserving the entire sample, greatly improves
the predictive power of EWS with respect to the pooled and standard fixed ef-
fects models. I also consider a dynamic formulation of EWS by including the
lagged dependent variable among the set of covariates, which has been shown
to be highly relevant in crises predictions (Antunes et al., 2018). In this frame-
work, it might be crucial to separately predict the crisis persistence and entry
rates of countries, that is the conditional probability of a crisis occurring at
time t given the crisis status in t − 1, rather than the marginal probability of
the crisis occurrence.

The bias corrected estimator is implemented in hansl, whereas the Re-
ceiver Operating Characteristic (ROC) curves and the Area Under ROC (AU-
ROC) to evaluate the model performance are estimated using the gretl func-
tion package roc by Summers (2017).
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2. The Penalized Maximum Likelihood estimator

Consider a dataset of countries i = 1, . . . , n observed for t = 1, . . . , T

years. The logit formulation

pit =
exp

[
yit(x

′
i,t−1β + αi)

]
1 + exp(x′i,t−1β + αi)

(1)

is the probability of country i facing a banking crisis in year t if the binary
variable yit is equal to 1. Moreover, xi,t−1 is a set of covariates usually lagged
by one or more periods, β is a vector of regression parameters and αi is the
country-specific intercept. If country i never experiences a crisis, the ML es-
timator of αi does not exist. Therefore, EWS are usually based on pooled
models, as fixed-effects estimators would otherwise entail the loss of the ob-
servations for countries never facing a crisis.

Retaining the whole sample while excluding the αi for countries with
yit = 0 for t = 1, . . . , T will lead to a biased ML estimator. The PML esti-
mator entails a reduction of the bias of the ML estimator for the parameters
of interest from O(T−1) to O(T−2). Let η be the vector of country-specific
intercepts excluding those relative to countries that never face a crisis and let
θ = (β′,η′)′. The PML estimator of θ is defined as the as the solution to the
modified score equation

U∗(θ) ≡ U(θ) +
1

2
tr
[
I(θ)−1{∂I(θ)/∂θ}

]
= 0, (2)

where U(θ) is the score for the log-likelihood based in (1) evaluated in θ
and I(θ) is the Information Matrix. The PML estimator θ̂ can be easily ob-
tained by Newton-Raphson. Standard errors can be obtained as the roots of
the diagonal elements of the panel robust variance estimator.

3. Results

Elaborations are based on an unbalanced dataset of 129 countries followed
for 36 years, from 1982 to 2017. The dependent variable is provided by
Laeven and Valencia (2018), taking value 1 for the crisis occurrence and 0
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otherwise. Their definition lead to 237 years of crisis, 64 of which are new
episodes. The list of explanatory variables for the specification of the logit-
based EWS (loosely based on the one adopted by Caggiano et al., 2016) as
well as their source, mean and standard deviation in the sample are reported
in Table 1.

Table 1. Variable sources and descriptive statistics

Source Mean SD

Dependent variable

Crisis Laeven and 0.07 0.26
Valencia (2018)

Explanatory variables

Real GDP growth(-1) IFS 3.87 4.23
Log per capita GDP(-1) WDI 7.71 1.46
Inflation(-1) WDI 5.94 386.8
Real interest rate IFS 2.35 11.37
M2 to foreign exchange reserves(-1) WDI 15.10 33.38
Growth of real domestic credit(-1) WDI 16.08 34.29
Growth of net foreign assets to GDP(-1) WDI 1.00 2.24

IFS: International Financial Statistics (International Monetary Fund). WDI: World Development Indicators (World

Bank). Inflation is the growth rate of the GDP deflator.

The performance of the PML estimator for the fixed-effects logit model
here proposed is compared with the performance of the ML estimator of the
pooled and standard fixed-effects logit models. It is worth recalling that the
latter entails a substantial observation loss. In particular the dataset shrinks
from 3045 to 1757 observations, because countries that never experience a
crisis episode are dropped form the sample.

Figure 1 depicts the ROC curves corresponding to the three models. The
ROC curve plots the sensitivity, that is the true positive rate, against the false
positive rate, also known as 1-specificity, for various thresholds (here 100)
at which ones are predicted. A point on the curve indicates the percentage
of non-crisis observations (on the x axis) that will be classified incorrectly in
order to have the corresponding percentage on the y axis of crisis correctly
predicted. Therefore, the Area Under the ROC curve (AUROC) is a measure
for the model performance.
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Figure 1. Logit model: ROC curves for for the ML estimation of the pooled
and fixed effects models and PML estimation of the fixed-effects model

The values of the corresponding AUROC for the three models are reported
at the top of Table 2. Results suggest that including fixed-effects substantially
increases the model performance. It is worth noting that the AUROC is even
higher for the biased reduced version of the fixed-effects estimator, which is
based on the entire sample. This finding is also confirmed by the value of the
McFadden R2.

Table 3 reports the AUROC and McFaddenR2 for the dynamic logit model,
where the lagged dependent variable is included in the set of covariates. Here
I focus on the crisis entry and persistence rates, rather than on the marginal
probability of the crisis occurrence. The entry rate is defined as the probabil-
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ity of a crisis occurring at time t conditional on there being no crisis at time
t − 1. Instead, the persistence rate is the probability of a crisis at time t con-
ditional on being already in a state of crisis at time t − 1. It emerges that the
proposed PML estimator of the fixed-effects logit outperforms both the ML
estimators of the pooled and standard fixed-effects models, as testified by the
values of the AUROC for the entry and persistence rates, and also picked up
by the McFadden R2.

Table 2. Logit model: results for the ML estimation of the pooled and fixed
effects models and PML estimation of the fixed-effects model

ML Pooled ML Fixed effects PML Fixed effects

# Obs. 3045 1757 3045

McFadden R2 0.067 0.189 0.280

AUROC 0.704 0.811 0.879
(95% CI) (0.662, 0.745) (0.782,0.841) (0.860,0.898)
Max correctly predicted 0.935 0.891 0.938

Real GDP growth(-1) -0.130∗∗∗ -0.107∗∗∗ -0.111∗∗∗

[0.023] [0.030] [0.028]

Log per capita GDP(-1) -0.040 -0.625∗∗ 0.100
[0.080] [0.262] [0.246]

Inflation(-1) 0.000 0.000 0.000
[0.000] [0.001] [0.001]

Real interest rate 0.012∗ 0.010 0.013
[0.007] [0.012] [0.010]

M2 to foreign 0.007∗∗∗ 0.021∗∗∗ 0.026∗∗∗

exchange reserves(-1) [0.003] [0.006] [0.005]

Growth of real 0.010∗ 0.006 0.011
domestic credit(-1) [0.006] [0.011] [0.010]

Growth of net foreign -1.127∗ -0.557 -1.167
assets to GDP(-1) [0.598] [1.069] [1.006]

The model specification includes the explanatory variables listed in Table 1. ∗∗∗ p-value< 0.01; ∗∗ p-value< 0.05;
∗ p-value < 0.10. Panel robust standard errors are in square brackets.

126



C. Pigini, Fixed effects in Early Warning Systems

Table 3. Dynamic logit model: results for the ML estimation of the pooled
and fixed effects models and PML estimation of the fixed-effects model

ML Pooled ML Fixed effects PML Fixed effects

# Obs. 3045 1757 3045

McFadden R2 0.449 0.456 0.533

AUROC entry 0.618 0.720 0.825
(95% CI) (0.538, 0.698) (0.653,0.787) (0.782,0.867)
Max correctly predicted 0.984 0.973 0.984

AUROC persistence 0.710 0.792 0.854
(95% CI) (0.667, 0.754) (0.761,0.824) (0.833,0.875)
Max correctly predicted 0.950 0.914 0.950

Crisist−1 4.449∗∗∗ 3.690∗∗∗ 3.512∗∗∗

[0.170] [0.179] [0.156]
Real GDP growth(-1) -0.042∗ -0.020 -0.024

[0.024] [0.027] [0.025]

Log per capita GDP(-1) 0.032 -0.069 0.369∗∗∗

[0.056] [0.218] [0.130]

Inflation(-1) 0.000 0.000 0.000
[0.000] [0.000] [0.000]

Real interest rate 0.011∗∗ 0.016∗ 0.016∗∗∗

[0.005] [0.008] [0.006]

M2 to foreign 0.007∗∗∗ 0.023∗∗∗ 0.025∗∗∗

exchange reserves(-1) [0.002] [0.006] [0.004]

Growth of real 0.009∗ 0.009 0.011∗∗

domestic credit(-1) [0.006] [0.007] [0.006]

Growth of net foreign -0.493 -0.366 -0.687
assets to GDP(-1) [0.557] [0.086] [0.068]

∗∗∗ p-value < 0.01; ∗∗ p-value < 0.05; ∗ p-value < 0.10. Panel robust standard errors are in square brackets. The

model specification includes the explanatory variables listed in Table 1 and the lag of the dependent variable.
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On (bootstrapped) cointegration tests in partial systems

Sven Schreiber∗

Abstract: As applied cointegration analysis faces the challenge that (a) potentially relevant

variables are unobservable and (b) it is uncertain which covariates are relevant, partial sys-

tems are often used and potential (stationary) covariates are ignored. Recently it has been

argued that a nominally significant cointegration outcome using the bootstrapped rank test

Cavaliere et al. (2012) in a bivariate setting might be due to test size distortions when a

larger data-generating process (DGP) with covariates is assumed. This study reviews the is-

sue systematically and generally finds noticeable but only mild size distortions, even when

the specified DGP includes a large borderline-stationary root. The previously found drastic

test size problems in an application of a long-run Phillips curve (inflation and unemployment

in the euro area) appear to hinge on the particular construction of a time series for the output

gap as a covariate. We conclude that the problems of the bootstrapped rank test are not severe

and that it is still to be recommended for applied research.

Keywords: Cointegration rank test, Partial systems, Empirical size

1. Introduction

The cointegration rank test conducted in a multivariate system (“Johansen
procedure”) is a widespread and popular tool for applied time series ana-
lysis. It has long been known that asymptotic inference with that test suffers
from substantial size distortions in small samples typical of macroeconomic
datasets. Johansen himself developed a finite-sample Bartlett correction for
the trace test statistic (Johansen, 2002), and later on bootstrap techniques were
proposed (Cavaliere et al. 2012, Cavaliere et al. 2015). This could be consid-
ered as the state of the art.
Recently, however, by conducting an extensive array of simulations Benati
(2015) arrived at the interesting result that even the bootstrapped version of

∗Macroeconomic Policy Institute Duesseldorf (IMK at Hans Boeckler Foundation), and Free
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the rank test could still be subject to considerable size distortions1. In one
of the many simulations in his paper he essentially analyzed the performance
of the bootstrapped rank test in a partial system, i.e. in a situation where the
VAR used for the test is lower-dimensional than the DGP, even when only
stationary covariates are omitted, not variables in the cointegration relation-
ships themselves. Let inflation be denoted as πt and unemployment as ut,
while the short- and long-term interest rates st and lt are transformed a priori
to the stationary term spread (l − s)t together with the differenced short rate
∆st and the output gap yt: Then the analysis concerns x2,t = (πt, ut)

′ with
N = 2 versus x5,t = (πt, ut, lt − st,∆st, yt)′ with N = 5. For the bivariate
system he reports in his Table 2 a p-value of 0.049 for the bootstrapped test of
a cointegrating rank r = 0 versus r = 1. This finding would usually suggest
to reject non-cointegration of euro-area inflation and unemployment at the 5%
level of significance. By simulation under the null hypothesis he then found
a considerable size distortion of the bootstrapped test based on x2,t when the
DGP was assumed to contain x5,t and dismissed the nominal findings of coin-
tegration as a “statistical fluke”.
Because the reliability of the cointegration test is crucial for many applied
research areas, simulations using the actual data are also supplemented here
with some simulations of artificial data2. Our main finding is that generally
the bootstrapped rank test does not over-reject to any alarming extent. This
is true for example in simulations of the full 5-dimensional system with x5,t
when the output gap yt is measured as a a standard HP-filter cycle of real

1 Benati’s paper was not meant as an econometrics methods study but investigated the existence of
long-run Phillips curve relationships in various economies (synthetical euro area, UK, USA, Canada,
and Australia). In this context the term “long-run Phillips curve” refers to a connection between π,
the growth rate of the price level (not wage inflation), and u, the level of the unemployment rate; see
section 4.2 for plots of the euro area data. We focus here on the results for the euro area and follow the
choice of Benati’s synthetical sample that actually predates the introduction of the euro (quarterly data
1970-1998).
2 The original application also considered cointegration ranks r > 1 including interest rate levels, and
checked CPI inflation as a variant. The datasets are not strictly identical, but we obtain qualitatively the
same results, see the appendix (1). For the bootstrap procedures we use the johansensmall.gfn function
package (version ≥2.6) by Sven Schreiber and Andreas Noack Jensen for the open-source gretl program
and freely available online from within gretl. Similar code for Matlab is for example available on De
Angelis’ homepage https://sites.google.com/view/luca-de-angelis/research.
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output. In the literature the bootstrapped rank test was found to have some-
what inflated test sizes when there is a large (stationary) root in the null model
(Cavaliere et al. 2015), but this effect appears to be limited in the given par-
tial system setting. We can qualitatively replicate the over-rejection of Benati
(2015) only with a particular output gap measure that was formerly distributed
with the ECB’s area-wide model dataset (AWM), some properties of which
we will discuss below. Hence overall we conclude that the problems of the
bootstrapped rank test are not severe and that it is still to be recommended for
applied research.

2. Theoretical considerations

Before turning to the simulations and replications, we briefly revisit the rel-
evant theoretical background for cointegration in potentially partial systems.
First of all, note that the meaning of a “partial” system is different from the
one used in Harbo et al. (1998) and related works. There the considered
systems are specified conditional on contemporaneous values of some of the
I(1) variables that are part of the cointegrating relations. In contrast, we use
the term “partial” to refer to a model that completely disregards some station-
ary variables of the underlying full system. If the full system vector xN,t is
N -dimensional and suitably ordered, we define a partial system as modelling
the subvector xM,t = FxN,t, where F = [IM : 0], M < N . Sometimes
the process representing xM,t is called a subprocess or marginal process; this
subprocess is assumed to contain all I(1) components of xN,t, such that for
the remainder process it holds that [0 : IN−M ]xN,t ∼ I(0).
The standard starting point that we will adopt is that the data of the full sys-
tem xN,t are generated by a finite-order VAR. It is well known that in general
the subprocess xM,t will then not possess a finite-order VAR representation
but instead some VARMA form, which in turn entails an infinite-order VAR
model. Before addressing any bootstrap techniques, an important question
thus concerns the cointegration analysis of inifite-order VARs.
In this context, one important insight which can be attributed to Saikkonen
and Luukkonen (1997) and Lüetkepohl and Saikkonen (1999) is that the ap-
plication of the standard Johansen rank test in V AR(∞) systems is asymp-
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totically valid. Of course, for the asymptotics to work the chosen lag order
must not grow too fast relative to the sample size, but this restriction is either
irrelevant for practical applications in given samples or is easy to implement
in an automated fashion.
Therefore, given that (1) the partial system xM,t has a V AR(∞) representa-
tion, that (2) the cointegration rank test using a finite lag order is asymptot-
ically still justified, and that (3) the mentioned bootstrap approaches to the
rank test are also known to be asymptotically justified, by implication the
bootstrapped rank test could in principle be expected to be valid for partial
systems, too.
However, approximating a V AR(∞) with a V AR(p) obviously leaves some
autocorrelation in the residuals “by construction”. This is not the situation
for which the iid-residual bootstrap is designed and hence it is not obvious
whether it continues to be valid. In such a situation, the residual-based block
bootstrap might be promising; see Jentsch et al. (2015), who deal with the
VECM coefficients for a given cointegration rank, however. Also, as men-
tioned by Kilian and Lütkepohl (2017), p.348, “no formal results ... about the
validity of conducting inference about structural impulse responses in cointe-
grated VAR models based on the residual-based block bootstrap” exist. While
our topic here is not structural impulse responses, a similar gap seems to ap-
ply to rank testing, especially in the V AR(∞) context of a partial system.
Until the statistical theory is completely settled, we must turn primarily to
simulation studies. Also, it appears essential to obtain a good approximation
to the V AR(∞) in the first place, such that the difference becomes negligi-
ble. Intuitively, if the residuals of a V AR(p) fitted to the partial system are
close to being white noise, then there is hope that a standard iid-residual boot-
strap will work as usual. Building on this insight, we will therefore choose
the VAR lag order for the partial systems endogenously based on diagnostic
autocorrelation testing as part of the simulation algorithm.
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3. Bootstrap test specifications

Throughout this note we focus on the popular case of an unrestricted con-
stant, which was formally justified in Cavaliere et al. (2015). For lag length
selection in the test VARs we deliberately choose not to use information cri-
teria. The reason is that the non-autocorrelation of residuals is essential for
the validity of the standard iid-residual based bootstrap, and some of the lag
order suggestions by information criteria led to substantial remaining resid-
ual autocorrelation. Thus we specify lag orders based on passing a diagnostic
autocorrelation test instead.
We focus on the case where the permanent effects on inflation of many shocks
are unrestricted (allowed but not forced to be permanent) because it leaves the
reduced-form coefficients of the VAR unchanged, allowing the standard ap-
plication of the Johansen rank test.
The original simulation study used a five-dimensional DGP including infla-
tion and unemployment that imposed absence of cointegration, and then ap-
plied the bootstrapped rank test of the null hypothesis r = 0 vs. r ≥ 1 to
the bivariate sub-system of simulated inflation and unemployment (in levels)
in each simulation draw. Table 3 in Benati (2015) shows that the bootstrap
procedure rejected the null hypothesis of no cointegration at a nominal 5%
significance in 18.3% of the simulation draws.
Thus he concluded that the bootstrap test grossly exceeded its nominal sig-
nificance level, and that therefore the original test rejection with a p-value of
just under 5% might be “a fluke”.
The original study’s suggested simulation design is absolutely reasonable.
However, this test approach is not the only possible one, at least two different
test variants come to mind when further variables are suspected to be relevant
for the system dynamics. To systematically address these issues, we enumer-
ate the following three possibilities of cointegration testing with stationary
co-variates in small samples:

1. (Bivariate, Benati’s method) The null model is given by an unrestricted
autoregression for the vector x′0,t = (∆ut,∆πt, yt,∆st, lt − st), where
yt is the output gap, and lt − st is the term spread between longer-
term and short-term interest rates. To ensure a common lag length in
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levels, the K−th lag coefficients for the differences of unemployment
and inflation are set to zero for the simulation DGP:

x0,t = c+
K−1∑
i=1

Aix0,t−i + (05,2|ÃK)x0,t−K + εt,

where ÃK is an unrestricted 5 × 3 matrix for the K-th coefficients of
the three stationary co-variates. Use this model to generate pseudo data,
then run the Cavaliere et al. 2015 bootstrapped cointegration test with
an unrestricted constant on each simulated draw of the bivariate data
x∗
′

2,t = (u∗t , π
∗
t ) with a lag order K3.

2. (Swensen, unmodelled covariates method) Another bootstrap possibil-
ity in the presence of stationary covariates is given by Swensen (2011).
The null model is again set up and simulated as in 1, and the boot-
strap test is also applied to the bivariate vector x∗′2,t = (u∗t , π

∗
t ). How-

ever, the test system is augmented with lags of the co-variates x∗′3,t =

(y∗t ,∆s
∗
t , (lt − st)

∗), i.e. x∗3,t−1...x
∗
3,t−K are added as unrestricted re-

gressors4.

3. (Full system method) If the researcher suspects that there are some im-
portant covariates which are known to be I(0), it seems natural to sim-
ply include them in the test system. Thus the null model and the boot-
strap framework is again given as in method 1, but here the vector to be
tested is x∗′5,t = (u∗t , π

∗
t , y

∗
t ,∆s

∗
t , (lt − st)

∗), and since the co-variates
add three stationary directions to the system already under the null, the
relevant hypothesis to test cointegration between unemployment and
inflation is r = 3 vs. r = 4 (again with K lags).

3 It is not obvious from Benati’s description how exactly he handles the lag structure in his simulation,
i.e. whether or not he chooses a different lag length for the bivariate subsystem. We determine the lag
length in each rank test based on autocorrelation diagnostics.
4 We do not include contemporaneous values of the covariates as this would obviously violate the
necessary assumption of uncorrelatedness. These pseudo covariates are re-generated in each simulation
run, but are then held fixed for the inner bootstrap. This corresponds to the test variant described in
remark 6 in Swensen (2011). His remark 3 also applies in our implementation, as we use the restricted
non-cointegrated model in the bootstrap algorithm.
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4. Simulation results

In order to have full control and to avoid any unknown properties of actual
data we start with the following artificial setup, where the role of unemploy-
ment and inflation is taken by vt and wt.

4.1. Size simulations with artificial data

Consider the vector x3 = (v, w, z)′ where the first two components (vt, wt)
are I(1) while the last one (zt) is a stationary co-variate. Due to the presence
of zt the formal cointegration rank (dimension of the stationary directions) of
the full system is one, even though the I(1) variables are not cointegrated. The
VECM representation is given by ∆x3,t = αβ′x3,t−1+Γ1∆x3,t−1+c+εt with a
diagonal covariance matrix and the trivial cointegration vector β = (0, 0, 1)′.
The loading coefficients are α = (0.1, 0.3, az)

′, the unrestricted constant
term is arbitrarily5 set to c = (0.9, −0.5, 0.3)′ and the short-run dynamics are
specified as:

Γ1 =

 0.4 0.3 0.1

0 0.5 0.1

0 0 0

 .
The covariate here is specified as an exogenous AR(1) process. Because
of the insight from Cavaliere et al. (2015) that a large stationary roots in
the system can affect the empirical size of the boostrapped rank test, we
analyze the cases az = −0.5 (small root) and az = −0.08 (large root).
As usual, the corresponding levels form VAR with two unit roots is x3,t =

B1x3,t−1 + B2x3,t−2 + εt, where B1 = αβ′ + I3 + Γ1 and B2 = −Γ1. With
az = −0.5 the roots of the system are: 1, 1, 0.5, 0.5, 0.4, 0, while with
az = −0.08 they are: 1, 1, 0.92, 0.5, 0.4, 0. In the latter case obviously
the largest stationary root is quite close to the unit circle and implies consid-
erable persistence.
Running the test size simulations with the bootstrapped test variants described
in Section 3, and using these two DGP variants, we obtain the results in ta-

5 Since the rank test with an unrestricted constant term is not similar and depends on the presence of
the drift term, it cannot be omitted.
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Table 1. Bootstrapped test size simulation, artificial DGPs

(simulated rejection frequencies
under H0, resampling as-if-iid) small root (0.5) large root (0.92)
Bivariate, r0 = 0 0.070 0.083
Swensen 2 + 1 covar., r0 = 0 0.071 0.065
Full 3-dim, r0 = 1 0.052 0.050

Notes: Nominal 0.05 significance level; 5000 replications; sample size T = 100.

ble 1. First of all, despite the small sample length of T = 100 the test size
distortions are relatively mild. In the full-system approach we even do not
observe any impact of the larger stationary root on the rejection frequency. In
the bivariate partial-system setup (first row in the table) there is an increase
from an effective size of 7.1% to a size of 8.3% in the presence of additional
high persistence, i.e. by roughly one percentage point.
Nevertheless, while these results are far from the previously reported distor-
tions with apparent test sizes > 15% (at nominal 5%), given a borderline
rejecting test result in actual data (for a chosen nominal significance level) it
may of course make a difference for the decision whether the effective level
of the test is α or 1.5α.

4.2. Simulated empirical size

We now turn to the actual data analysis. The underlying system in these
subsections 4.2 through 4.4 is a 5-dimensional VAR using the cycle compo-
nent of a standard Hodrick-Prescott (HP) filter applied to real GDP as the
relevant measure of the output gap yt (see Figure 1). The two I(1) series are
reported in Figure 2, and the interest rate data as further stationary covariates
in Figure 3.

We simulate the effective size (rejection probability under the null) of
the bootstrapped cointegration test in the three different test strategies. Fol-
lowing Benati’s approach we take the parameters of a non-cointegrated 5-
dimensional VAR fitted to the data as the posited DGP; to this end the two
I(1) variables are differenced and the stationary variables are left as is. We
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(AWM is the output gap series from an earlier vintage of the ECB’s area-wide
model database, displayed for comparison. See also appendix 1.)

Figure 1. Output gaps

use 4 lags to obtain the parameters under the null, as this satisfies both the
AC and ARCH residual tests6. For fitting the model to the simulated data in
each draw we do not impose the original lag length but the algorithm chooses
the lag order endogenously based on diagnostic residual testing. As explained
above, this is important to obtain empirical residuals as close to white noise
as possible.

Table 2 reports the size simulation results. For the rightmost column “wild”,
the rank test is based on a wild bootstrap scheme from the cited literature to
account for potential heteroskedasticity. The takeaway from that simulation
is that again there are only mild size distortions. The empirical sizes of the bi-
variate partial-system test and of Swensen’s approach are roughly equal, and
the full-system approach is mildly conservative which implies that its size is
6 Having approximately white noise innovations is preferable because we use resampling for the sim-
ulation. If we drew the simulation innovations from a parametric model instead the lag length would of
course be less important. In any case there are no qualitative differences whether one bootstrap variant
or the other is used.
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Figure 2. Inflation and unemployment rates

only about half of the sizes of the other aproaches (for a nominal 0.05 level).

4.3. Test results

Although the main motivation for this study is the behavior of the bootstrap
rank test in partial systems in general, it is also interesting to replicate the test
outcome from the original application. Given that we do not have the strictly
identical dataset and vintages we do not expect identical results anyway, but
the primary difference concerns the lag length specification: Because of the
importance of non-correlated residuals we base our lag choice on diagnostic
tests instead of information criteria.
Our test results on the actual data are reported in Table 3; the bivariate results
in the first row are qualitatively similar to Benati (2015), namely that the null
of no cointegration is nominally rejected at the 5% level but not at the 1%
level7. The p-values are actually a little lower than in the original study, such

7 As a memo item, note that the standard bivariate rank test without a bootstrap and using asymptotic
critical values here has a p-value ten times lower at 0.001.
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Figure 3. Interest rates

Table 2. Test size simulations

(simulated rejection frequencies under H0) as-if-iid wild

Bivariate, r0 = 0 0.069 0.083
Swensen 2 + 3 covariates, r0 = 0 0.079 0.077
Full 5-dim, r0 = 3 0.033 0.040

Notes: Simulation of the size of the bootstrapped rank test. Nominal 5%; 2000
simulation replications; the bootstrap test in each simulation draw uses 1000
replications. The time series length is T = 109.
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Table 3. Bootstrapped cointegration rank tests (inflation / unemployment)

(bootstrapped p-values) iid wild
Bivariate 0.011 0.027

Swensen 2 + 3 covar., r0 = 0 0.182 0.213
Full 5-dim, r0 = 3 0.159 0.185

Notes: 4999 replications; lags are chosen based on diagnostic tests: bivariate – 7
lags, Swensen’s approach – 7 lags, full system – 4 lags. The respective sample
size T is 113 minus the lag order.

that even after considering the noticeable size distortions from Table 2 the re-
sult would seem significant at the 5% level. However, the test conclusion is
still not very clearcut.
While the residuals are free from autocorrelation in the bivariate specification
with seven lags, there are always remaining ARCH effects, so the wild boot-
strap variant (right column) may be preferred for the bivariate case. The other
approaches were not considered in the original application.
Swensen’s approach, where the bivariate system is augmented with the sta-
tionary covariates, is also subject to ARCH-type residuals, again suggesting
the use of the wild bootstrap. Here the bootstrapped p-value is far above
conventional critical levels (0.213), suggesting non-rejection of no cointegra-
tion. Finally, the full-system setup with four lags is well behaved, so the iid
bootstrap is the method of choice, but it shares with Swensen’s setup the non-
rejection result (p-value 0.159).

4.4. Power assessment

The test results in Table 3 represent a dilemma. Given that in Table 2 we
found that the size distortions of the bootstrapped rank test variants are not
dramatic, we do not prefer one approach in Table 3 over any other based on
the size assessment – that is, if we share the prior belief about the relevant
covariates; otherwise the bivariate test would be preferred. But obviously the
test outcomes are very different, so a test decision is difficult.
Therefore we turn to an assessment of the empirical power of the three test
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Table 4. Test power simulations

(simulated rejection frequencies) iid wild
Bivariate, r0 = 0 0.810 0.798
Swensen 2 + 3 covariates, r0 = 0 0.139 0.128
Full 5-dim, r0 = 3 0.224 0.235

Notes: Simulation of the power of the bootstrapped rank test for the fixed alterna-
tive given by the cointegrated system (cointegration between unemployment
and inflation plus the three stationary covariates) estimated from actual data.
Nominal 5%; 2000 simulation replications; the bootstrap test in each simula-
tion draw uses 1000 replications. The time series length is T = 109.

approaches. To this end we run a similar simulation as before in Section
4.2, but using as the DGP a system under the alternative hypothesis, with
cointegration: the parameters are taken from the estimated error correction
system (VECM) of the actual data under an assumed rank of 4, including
the cointegration coefficients β. Three of the four columns of β are trivial
unit vectors picking the stationary covariates, which technically increases the
cointegration rank. The only “actual” cointegration relationship is still the
one between unemployment and inflation. Then we simulate artificial data
many times with resampled innovation processes, and each time we run the
bootstrapped cointegration rank test on the artificial data.
The results of that simulation exercise are reported in Table 4. There is a
surprisingly large gap between the power of around 80% in the bivariate case
and the power below 25% or even 15% in the full-system and Swensen ap-
proaches. This means that the latter two approaches would quite rarely result
in rejection of the null hypothesis even if it were false. Against this back-
ground it appears that the bivariate setup is the most reliable, combining only
mild size distortions with large power advantages. Given the present covari-
ates, the most natural test conclusion would therefore seem to be that euro
area unemployment and inflation are cointegrated at a significance level of
5%, but not at the 1% level.
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5. Conclusions

The issue of how cointegration rank tests behave when they are applied
in partial systems is important, because in practice (a) either potentially rel-
evant variables are unobservable, or (b) it is fundamentally uncertain which
covariates might be relevant. This study has partly confirmed the worrying
insight that rejection results in partial systems may sometimes be misleading.
However, the good news is that the amount of the size distortion appears far
smaller than previously suggested in the literature.
The conjecture (inspired from Cavaliere et al. 2015) that the size distortion
may be due to additional large (stationary) roots in the DGP in the background
was only partly reflected in simulations with artificial data, and the effect did
not appear large. For the original application of a euro-area long-run Phillips
curve we were only able to replicate dramatic size distortions by simulations
when the special AWM gap variable from Figure 1 was used as a covari-
ate. (Various vintages of that series were formerly published as part of the
area-wide model dataset of the ECB, see also the appendix). That time series
possesses a mean in the second subsample which is lower by about 72% of
the series’ standard deviation; thus it may not really be stationary, which is
unusual for such a gap concept. We also suspect that this output gap mea-
sure was constructed depending on the in-sample development of inflation,
and that this causes the decline in the medium to long run. Hence it induces
a larger root in the fitted model that was then used as the DGP in the simu-
lations. Nevertheless, the quantitatively dramatic consequences of basing the
simulations on this particular co-variate remains surprising.
In contrast, the test size distortions are very limited with a standard HP filter
gap in the background, even though its univariate autoregressive root is also
quite large (0.85). Therefore, the econometric evidence for cointegration in
this sample between unemployment and inflation remains intact, unless one is
completely convinced a priori that the true output gap was given by the AWM
measure. We also showed that using full-system methods instead does not
pay off, suffering from a severe lack of power.
Finally, it should be acknowledged that this study has addressed a very spe-
cific methodological aspect of Benati (2015), which also includes an impres-
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sive amount of other empirical and theoretical work. It is not the purpose of
this note to question the broad conclusions of his work, summarized as “un-
certainty ... is ... substantial” (p. 27). We fully agree. Nevertheless, we regard
it as important to clarify for applied economists that conducting cointegration
tests in small samples with a bootstrap remains a justified practice and that its
results cannot be easily discarded as “statistical flukes”.

1. Supplementary results with the AWM gap

The euro-area output gap measure in Benati (2015) is not a standard HP-
filtered cycle but was based on a certain vintage “from the ECB’s database”
(quote from the online appendix to Benati, 2015). The precise calculation
method of that series is unknown.

As a proxy we used the output gap series that we obtained from an earlier
vintage of the ECB’s area-wide model (AWM) database. In Figure 1 this
proxy and the HP gap were compared. At business-cycle frequencies the two
series are highly correlated, as should be expected. However, while the HP
cycle measure fluctuates around a constant mean (by construction), the AWM
gap is more persistent in the longer run, starting with a sequence of higher-
than-average values and finishing the sample with many lower-than-average
values. Its AR(1) root is 0.90, opposed to the slightly lower root of the HP
cycle of 0.85. Given the limited effects of a large stationary root (see Section
4.1) we do not expect this property alone to have a large impact.

In the test size simulations analogous to Section 4.2, using this described
AWM gap instead then requires 7 lags under the null to obtain innovations
close to white noise. We observe in Table 5 that again the full-system ap-
proach is somewhat conservative, Swensen’s approach is mildly oversized,
but that now the bivariate partial-system test approach is dramatically over-
sized with an empirical size over 30% for a nominal 5%. This is even more
drastic than Benati’s original finding (based on a different lag length and prob-
ably slightly different data). Together with the actual test outcomes in Section
4.3 this represents a qualitatively successful replication of the original results.

It could be seen in Figure 1 that the initial values of the earlier AWM output
gap are artificially extended and perhaps not very intuitive. As a robustness
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Table 5. Test size simulations under 5-dim DGP with YGA

(simulated rejection frequencies under H0) resampling as-if-iid wild
Bivariate, r0 = 0 0.349 0.327
Swensen 2 + 3 covar., r0 = 0 0.067 0.086
Full 5-dim, r0 = 3 0.023 0.023

Notes: nominal level 0.05; 2000 replications, 7 lags in DGP, sample 1970Q2-
1998Q4 (including initial values).

Table 6. Robustness: Test size simulations under 5-dim DGP with shorter
YGA

(simulated rejection frequencies under H0) resampling as-if-iid

Bivariate, r0 = 0 0.230
Swensen 2 + 3 covar., r0 = 0 0.089
Full 5-dim, r0 = 3 0.035

Notes: nominal level 0.05; 2500 replications, 4 lags in DGP, sample 1971Q4-
1998Q2 (including initial values).

analysis we therefore took a more recent vintage of the AWM database where
the output gap variable (YGA) only ranges from 1971Q4 to 1998Q2, see Fig-
ure 4. (Note that in more recent vintages of the AWM dataset the constructed
YGA variable does not appear anymore.) In this shorter sample without the
starting episode 4 lags are sufficient, and the corresponding simulation results
are given in Table 6.
It can be seen that the results correspond qualitatively to the ones in Table 5.
The bivariate partial-system test results of the actual data are of course unaf-
fected by any variations of the covariates in the background simulations and
are therefore not repeated.

For completeness we also report the bootstrapped actual test results with
the older AWM gap in Table 7. (Again, the bivariate test by definition does
not depend on the output gap variable and was already shown in Table 3.) For
the Swensen approach there are always remaining ARCH effects, thus the
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Figure 4. Shorter AWM output gap (YGA) range

Table 7. Test results with actual data (AWM gap)

(bootstrapped p-values) iid wild
Swensen 2 + 3 covar., r0 = 0 0.007 0.011
Full 5-dim, r0 = 3 0.366 0.335

Notes: 2000 replications; lag choices: Swensen – 5 lags, Full-system – 7 lags.

wild bootstrap results may be preferred, with a p-value of 0.011 suggesting
rejection of no cointegration at the 5% significance level. Given the only mild
size distortions of the Swensen approach this appears to be a valid result. The
full-system approach here implies well-behaved residuals, so the preferred
variant is the iid bootstrap, yielding a p-value of 0.366, not providing evidence
in favor of cointegration. This may be accurate or could also be due to the lack
of power demonstrated before.
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CUB for gretl
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Abstract:

CUB models are a class of mixture distributions for analyzing ordinal responses in the

form of ratings or marginal ranking that designs the decision process as the combination of

two main components: a personal feeling and an inherent uncertainty. This methodology is

receiving an increasing interest due to successful applications to the analysis of evaluations,

opinions and perceptions, in various fields of research, and thanks to advantageous graphical

interpretation of results. Currently the estimation of CUB models can be run by the R library

’CUB’ ver. 1.1.3. In this paper a gretl package for CUB models is presented, all the estima-

tion examples and graphs proposed in the R vignette are replicated.

Keywords: CUB models, ML estimation, Graph tools

1. Introduction

Ordinal responses in the form of ratings arise frequently in applications
where human preferences, judgments and perceptions play a key role. A
well-known example are the studies on customers/users’ satisfaction where
it is common to collect raters’ evaluation on a hedonic scale, along with a
set of categorical and/or quantitative covariates that characterize the respon-
dent. In this framework the main goal is modeling the relationships between
the ordinal variable and the covariates to identify different response patterns.
The analysis of ordinal data is the subject of a wide literature, see among
others Agresti (2010) and Tutz (2012). An alternative approach is based on
CUB models (D’ Elia and Piccolo 2005, Piccolo and D’Elia 2008, Piccolo
and Simone 2019), a family of discrete mixtures that, in the last years, has
received an increasing attention due to successful applications to various re-
search fields. The acronym CUB stands for Combination of Uniform and
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∗∗ Università di Napoli Federico II, rosaria.simone@unina.it
∗∗∗ Università Politecnica delle Marche, r.lucchetti@univpm.it
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(shifted) Binomial random variables in the mixture that defines the model.
The idea behind these models is that discrete choices arise from a psycho-
logical mechanism that involves two components: a personal feeling and an
inherent uncertainty surrounding the decision process. Feeling is mainly re-
lated to the subjects’ motivations and it can be adequately represented by the
shifted Binomial random variable; the discrete Uniform random variable, in-
stead, is the most appropriate distribution to deal with the intrinsic indecision
of the discrete choice process. In particular, the shifted Binomial random
variable represents a discrete version of the continuous latent trait allowing
the unobserved perception be mapped to an ordinal evaluation; the Uniform
distribution corresponds to the maximum entropy on a finite support. One of
the strengths of a CUB model is that it is identified by two parameters only,
then an effective graphical representation of the model can be obtained as a
point in the parameter space, allowing comparisons among items or repeated
measurements over time.
A simple CUB model, without covariates, can be employed per se to estimate
the expected distribution given a sample of observed ordinal values, but the
usefulness and relevance are strengthened if subjects’ or objects covariates
are associated to feeling and/or uncertainty parameters, in the same spirit of
Generalized Linear Models (McCullagh, 1980). This technique leads to CUB

regression models, in which a relevant role is played by the selection of the
covariates for uncertainty and/or feeling that mostly explain the response and
improve the fitting.
The CUB model can be formally described as follows.
Let Ri the response of the i-th subject to a given item of a questionnaire col-
lected on a m-point scale, the probability of Ri = r is assumed as:

Pr(Ri = r|πi, ξi) = πi

(
m− 1

r − 1

)
ξm−ri (1− ξi)r−1 + (1− πi)

1

m
, (1)

where r = 1, . . . ,m, with m > 3 for identifiability purposes, and the param-
eters πi and ξi are called uncertainty and feeling parameters, respectively.
As to the preference part of the model, the larger 1 − ξi, the more the distri-
bution is concentrated along the highest scores. Thus, if the scale is oriented
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as the greater the score the more positive the evaluation, a high level of 1− ξi
indicates a positive tendency in the data w.r.t. the topic under investigation.
For instance, 1−ξi is a measure of agreement if the respondent is asked to ex-
press his/her accordance to a given statement, or an indicator of satisfaction if
he/she is asked to assess the quality of a service/product. Owing this versatile
interpretation, ξi is referred to as feeling parameter.
Left panel of Figure 2.4 shows some CUB probability distributions for several
values of π and ξ in the parameter space Ω(θ) = (0, 1] × [0, 1]. The pecu-
liar parametrization of CUB models allows a deeper descriptions than those
obtained by standard indicators: for instance, Models F and I share the same
mean value, although they have quite different distributions. In addition, as
mentioned above, since each CUB distribution is identified by two parame-
ters, it can be represented as a point in the parameter space as in right panel of
Figure 2.4, offering an intuitive tool to compare several models (for instance,
each model in the figure could correspond to an item of a questionnaire).
A richer CUB model can be obtained including explanatory variables so that
feeling and/or uncertainty directly depend on respondents’ profiles assuming
a logit link between parameters and covariates:

logit(πi) = β0 + β1 y1i + β2y2i + · · ·+ βpypi, (2)

logit(ξi) = γ0 + γ1w1i + γ2w2i + · · ·+ γqwqi, i = 1, . . . , n. (3)

The resulting model with p covariates y1 = (y1i,

. . . , y1n)′, . . . ,yp = (ypi, . . . , ypn)′ considered to explain uncertainty and q

covariates w1 = (w1i, . . . , w1n)′, . . . ,wq = (wqi, . . . , wqn)′, (with yi ∈ Y ,
wi ∈ W include the selected covariates for the i − th subject), is referred
to as a CUB (p, q) model, with parameters (β

′
,γ
′
)
′ , β′ = (β0, . . . , βp)

′ ,
γ
′

= (γ0, . . . , γq). With this notation, the baseline definition of CUB mod-
els with no covariate neither for feeling nor for uncertainty is indicated with
CUB (0, 0) model (in this case, πi = π and ξi = ξ are constant among sub-
jects). Note that the choice of the logit link is rather arbitrary, and it is mainly
preferred since it grants easiness of interpretation and implementation and no
restraint on the nature of explanatory variables is required. If D is dichoto-
mous variable considered as a covariate for πi and ξi, then a CUB (1, 1) model
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Figure 1. Selected CUB probability distributions and scatterplot in the pa-
rameter space. Source: Fig. 4.1 and 4.2 in CUB R package vignette
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fitted to the data will identify two sub-samples, each of which characterized
by feeling and uncertainty obtained via (2)-(3). Similarly, a CUB (1, 0) model
sets only a dichotomous variable to explain uncertainty: if significant, two
different uncertainty values and a common estimate for the feeling parameter
will describe the data. Similar arguments apply for CUB (0, 1) models. In
each of these cases, in the end the sample will be split in two separate subsets
of observations.
The CUB model can be inflated to take into account the presence of a shelter
category (shelter effect, see Iannario 2012). A shelter category s ∈ 1, ...,m

is the modality that receives an upward bias of preference with respect to the
expected response. Testing the presence and measuring the shelter effect can
be done extended the CUB model with the introduction of a degenerate distri-
bution D(s)

r = I(R = s), whose probability mass is concentrated at r = s.
Thus, the model assumes the expression:

Pr(Ri = r|π1i, π2i, ξi) = π1i

(
m− 1

r − 1

)
ξm−ri (1− ξi)r−1+ (4)

(1− π2i)
1

m
+ (1− π1i − π2i)D(s)

r , r = 1, . . . ,m,

or the equivalent specification:

Pr(Ri = r|π∗i , δi, ξi) = δiD
(s)
r + (1− δi)

[
π∗i

(
m− 1

r − 1

)
ξm−ri (1− ξi)r−1

(5)

+(1− π∗i )
1

m

]
+, r = 1, . . . ,m,

where δi = (1 − π1i − π2i) and π∗i = π1i
π1i+π2i

. With this re-parametrization
the shelter effect can be quantified by the parameter δi and the associated
modification of the uncertainty component is evaluated by comparing the πi
parameter in model (1) with π1i in model (5). Estimation of CUB models relies
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on Likelihood methods, where the log-likelihood is:

Ln(θ) =
n∑
i=1

log [Pr(Ri = r|yi,wi,θ)] (6)

with θ is the vector of estimable parameters. Fit improvements yielded by
CUB regression models can be tested via the standard Likelihood Ratio Test
(LRT): indeed, a CUB (0, 0) is nested into any of the extensions CUB (p, q).
Likelihood estimation methods and the implementation of the Expectation-
Maximization (EM) algorithm for mixtures by McLachlan and Krishnan (1997)
for CUB models are currently implemented within the CUB model R library
ver. 1.1.3 (Iannario et.al, 2018).
In this paper, the gretl translation of the R package is presented. The current
version of the gretl package is based on ML estimation via mle gretl com-
mand.
The implementation of the EM estimation algorithm and two generalization
of the CUB models, the case of the Beta-binomial and the degenerate Binomial
distributions implemented in the R package, are subject of ongoing work.
All the estimation examples and graphs proposed in the R vignette are repli-
cated and some exercises based on the satisfaction survey from the NTTS
2019 conference are presented.

2. The gretl package

To describe the gretl package we follows the examples reported in the
vignette to the R package ’CUB’. These examples are base on the dataset
univer, for which detailed descriptions and further references can be found at
http://www.labstat.it/home/research/resources/cub-data-sets-2.

The dataset univer collects data from a sample survey on students’ evaluation
of the Orientation services that has been administered across all the Faculties
of University of Naples Federico II in 2002 and consists of 2179 observations.
Participants were asked to express their ratings on a 7 point Likert-type scale
(1 ="very unsatisfied", 7 = "extremely satisfied") on the following items:

• informat: Level of satisfaction about the acquired information
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• willingn: Level of satisfaction about the willingness of the staff

• officeho: Level of satisfaction about the opening hours

• compete: Level of satisfaction about the competence of the staff

• global: Level of global satisfaction

There are also subjects covariates: gender, equal to 0 for men and to 1 for
women, age in years, and freqserv, indicating the usage frequency of the
service with levels 0 and 1 for non-regular and regular users.

The ML estimation in the CUB gretl package is based on the mle command
with default options: bfgs algorithm and OP covariance matrix. To fit CUB

models in gretl, the ordinal data and the covariates must be arranged as series.

2.1. Estimation of a CUB (0, 0) model

As above described, the baseline CUB model is the CUB (0, 0) distribution.
The simplest call to run a CUB (0, 0) on the ordinal variable officeho of the
dataset univer is:

# include functions

include cub_functions.inp

include cub_graph.inp

# initial settings

scalar m = 7 # number of possible ranking or rating

scalar shelter = 0 # shelter if >0 with shelter integer in [1,m]

scalar verb=0 # if 1 verbose

# ------ CUB(p,q)

# declare covariates , constant is compulsory

list Y = const

list W = const

# call estimation procedure
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mod00 = CUB(officeho, Y, W, m, shelter,verb)

# print results

printout(mod00)

As for the CUB (0, 0) π and ξ lie in the parameter space Ω(θ) = (0, 1] × [0, 1],
they are logit-transformed during the estimation procedure. Then the displayed out-
put, obtained using the function printout, shows the MLE estimation results and the
reverse-transformation in terms of the original parameters π and ξ. Usual statistical
indicator as Log-likelihood, AIC and BIC are reported.

Function evaluations: 17

Evaluations of gradient: 17

ML, using observations 1-2179

loglik = log(prob_cub(y, m, theta, Y, W, infl))

Standard errors based on Outer Products matrix

estimate std. error z p-value

-------------------------------------------------------

theta[1] 0.755766 0.0877592 8.612 7.19e-018 ***

theta[2] -1.40396 0.0328171 ?42.78 0.0000 ***

Log-likelihood ?3759.917 Akaike criterion 7523.834

Schwarz criterion 7535.208 Hannan-Quinn 7527.992

Dep.var = officeho

coefficient std. error z p-value

-------------------------------------------------------

pai 0.680434 0.0190827 35.66 1.83e-278 ***

csi 0.197189 0.00519512 37.96 0.0000 ***

max LLn = -3759.92

AIC = 7523.83

BIC = 7535.21
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The estimated coefficients are the same reported in pag.14-15 in the R vignette;
all the procedure output are stored in a bundle, named mod in this example, that
includes, among others, the estimated coefficients and the estimated individual prob-
abilities. The available elements in the output bundle are listed in the appendix.

2.2. Estimation of a CUB (p, q) model

Even for the CUB (p, q) example we follows R vignette. To explain the feeling
component in a model for the variable officeho, we include the dichotomous co-
variate freqserv. The call becomes:

list Y = const

list W = const freqserv

mod01 = CUB(officeho, Y, W, m, shelter,verb)

# print results

printout(mod01)

The results, again very close to that reported at pag. 16 in the R vignette, are:

Function evaluations: 17

Evaluations of gradient: 17

ML, using observations 1-2179

loglik = log(prob_cub(y, m, theta, Y, W, infl))

Standard errors based on Outer Products matrix

Dep.var = officeho

coefficient std. error z p-value

---------------------------------------------------------

beta 0.787360 0.0873000 9.019 1.90e-019 ***

const -1.15167 0.0384859 -29.92 9.48e-197 ***

freqserv -0.810594 0.0723345 -11.21 3.80e-029 ***

max LLn = -3704.36

AIC = 7414.71

BIC = 7431.77
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The likelihood ratio test can be used to compare the two models, as well as
the comparison of the BIC index: in that case, BIC(mod00)= 7535.21 is reduced
to to BIC(mod01)= 7431.77 giving a clear support to the inclusion of the covariate
freqserv in the model feeling.
A continuous covariate and a dichotomous one can be jointly considered. Let Lage
be the deviation from the mean of the logarithmic transform of covariate age, and
the dummies gender and freqserv can be considered to explain both feeling and
uncertainty for a CUB (2, 1) model. The model can be run with the following call:

# center countinous variables

lage = log(age)

lage -= mean(lage)

list Y = const lage gender

list W = const lage freqserv

modpq = CUB(officeho, Y, W, m, shelter,verb)

printout(modpq)

and the results (see R vignette pag. 19) are

Function evaluations: 48

Evaluations of gradient: 48

ML, using observations 1-2179

loglik = log(prob_cub(y, m, theta, Y, W, infl))

Standard errors based on Outer Products matrix

Dep.var = officeho

coefficient std. error z p-value

---------------------------------------------------------

const 0.564891 0.115899 4.874 1.09e-06 ***

lage 1.23720 0.635596 1.947 0.0516 *

gender 0.495619 0.169527 2.924 0.0035 ***

const -1.14668 0.0385482 -29.75 1.92e-194 ***
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lage -0.590458 0.229282 -2.575 0.0100 **

freqserv -0.822841 0.0725023 -11.35 7.49e-030 ***

max LLn = -3693.89

AIC = 7399.78

BIC = 7433.89

2.3. Estimation of a CUB (p, q) model with shelter

The use of shelter can be described by the adding a shelter in category 5 to the
previous call for a CUB (0, 0) model:

scalar shelter = 5

list Y = const

list W = const

modshe = CUB(officeho, Y, W, m, shelter,verb)

printout(modshe)

stima errore std. z p-value

--------------------------------------------------------

theta[1] 0.380070 0.0931511 4.080 4.50e-05 ***

theta[2] -1.72252 0.0614531 -28.03 7.03e-173 ***

theta[3] -2.21316 0.154588 -14.32 1.73e-046 ***

Dep.var = officeho

coefficiente errore std. z p-value

----------------------------------------------------------

pai 0.593890 0.0224666 26.43 5.52e-154 ***

csi 0.151547 0.00790165 19.18 5.53e-082 ***

delta 0.0985751 0.0137364 7.176 7.17e-013 ***

max LLn = -3741.66 AIC = 7489.33 BIC = 7506.39

The estimated shelter coefficient δ̂ = 0.098 is statistically different from zero,
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showing a better fit with respect to the CUB (0, 0) model without shelter (the BIC
decreases to 7506.39 while without shelter it was 7535.21).

Shelter effect can be tested also in presence of covariates, as the following exam-
ple shows:

list Y = const

list W = const lage

scalar shelter = 5

mod = CUB(officeho, Y, W, m, shelter,verb)

printout(mod)

Dep.var = officeho

coefficient std. error z p-value

---------------------------------------------------------

beta 0.388420 0.0930838 4.173 3.01e-05 ***

const -1.71704 0.0609261 -28.18 9.64e-175 ***

lage -0.658582 0.318984 -2.065 0.0390 **

delta 0.0982375 0.0136916 7.175 7.23e-013 ***

max LLn = -3739.86 AIC = 7487.72 BIC = 7510.47

2.4. Multicub function

As in the R package, we can visualize simultaneously the ordinal variables in-
cluded in the dataset univer by means of the function multicub that fits a CUB

(0, 0) model to every ordinal variable in a given list. With this function, the estimated
parameters (π̂, ξ̂) for each model are considered as the coordinates in the parameter
space corresponding to the obtained ML uncertainty (1 − π̂) and feeling (1 − ξ̂)

estimates. The CUB parameters are π and ξ but their interpretation depends on the
orientation of the measurement scale. If the evaluation is positive in the direction of
the scale, then the actual measure of feeling is (1− ξ). The call to run the multicub
function on the ordinal variables included within the dataset univer is:

# ------ multiCUB

scalar m = 7 # number of possible ranking or rating
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Figure 2. plot_multicub function output: scatterplot in the parameter
space, default (Panel A) and customized (Panel B) settings

# list of the ordinal variables to be compared by CUB(0,0)

list My= officeho global informat willingn compete

mshelter = {0, 0, 0, 0,0} # set shelter foreach i in My

coord=multicub( My, m, mshelter,verb)

plot_multicub( My, coord,)

The results are the estimated parameters (π̂, ξ̂) for each model, collected in the
matrix coord, and the associated scatterplot that can be invoked using the func-
tion plot_multicub. By default the plotting area is the whole parameter space
Ω(θ) = (0, 1] × [0, 1], but the graph can be modified according the usual gretl
procedure. See for example the left panel (default graph settings) and right panel
(customized settings) of Figure 2.4. The Figure reproduce Figure 4.2 in the CUB R
vignette reported in Figure above.

3. Graphs

As mentioned in the previous sections, graphical tools are one of the strengths of
CUB models.
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Figure 3. Estimated probability distributions from plot_distr for CUB
(0, 0) models without (Panel A) and with shelter (Panel B)

The gretl package, as the original R library, produces as default some useful graphs.
One of that is the above mentioned scatterplot plot_multicub that shows the esti-
mated CUB (0, 0) coefficients for a list of ordinal variables in the parameter space.
The graph can be customized as usual using the gretl or Gnuplot facilities.
After a single CUB (0, 0) estimation, the call to plot_distr produces a plot compar-
ing the estimated distribution and the observed frequencies. For the case discussed in
section 2.1, the estimation procedure returns the bundle mod00, then the call

plot_distr(mod00)

produces such graph for CUB (0, 0) without shelter specification in Panel A and the
call plot_distr(modshe) gives the Panel B of Figure 3, respectively.

The call plot_distr_exod produces a plot comparing the two fitted probability
distributions conditional on the values a the dichotomous covariate. Still consider-
ing the example in section 2.1, we can obtain the fitted probability distributions for
officeho conditional to the variable freqserv using the call:

list Y = freqserv

list W = freqserv

scalar shelter = 0

mod11 = CUB(officeho, Y, W, m, shelter,verb)

plot_distr_exod(mod11, freqserv)
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Figure 4. Estimated probability distributions for officeho conditional to
freqserv, obtained via plot_distr_exod function output

The resulting plot is shown in Figure 3.
When a CUB (p, q) is estimated, the procedure return the estimated probabilities

for each individual, then the function plot_distr returns for each category the mean
of the estimated individual probabilities given the individual observed covariates.
Please note that in that case the sum of the mean of the estimated probabilities is not
necessarily equal to 1. For this reason the observed frequency is not over-imposed in
the graph. In the example illustrated in the section 2.2 the results of the function

plot_distr(modpq)

are in Figure 3.

4. A simple speed comparison

A simple speed comparison is performed in the following way: a set of 5000

samples with n=500 observations drawn from a CUB (0, 0) with parameters π = 0.7

and ξ = 0.8 is generated using the R procedure simcub. On that dataset the speed
performance of the CUB (0, 0) ML estimation based on bfgs algorithm in the gretl

package and the ML estimation based EM algorithm in the original R package are
compared. The current version of the gretl package results 10 times slower then the
R pakage: 357 seconds using commandline program gretlcli vs 39 seconds using
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Figure 5. Distribution of the means of the estimated probabilities given co-
variates, for each category, obtained from plot_distr for CUB (p, q)

the R studio interface on a Windows 10 pc x64 based processor, Intel i5, 2.60Ghz,
8 Gb RAM. Then an code optimization are in order.

5. Appendix: CUB functions input output description

---

CUB

---

usage: mod = CUB(ordinal, Y, W, m, shelter,verb)

Main function, performs the main computations and stores results

into the returned bundle

inputs:

ordinal: series of rating or ranking on m categories

Y list of series: covariate for Uncertainty parameter pai

W list of series: covariate for Feeling parameter csi

m number of categories for series ordinal

shelter scalar in [1,m] default 0, no shelter

verb scalar, default 0: verbose off

output: Bundle containing:
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bundle mod:

y series, depended variable

phat series individual estimated probabilities

lnl scalar max value of loglik

shelter scalar

simple scalar if 1 CUB(0,0)

freq matrix: m x 1 observed frequency for ordinal

raw_coeff matrix p+q+2 or p+q+3 (if shelter) x 1, estimated

parameter before transformation

T scalar, total number of observation

bic scalar, information criteria

depvarname string name of the depended variable y

fhat matrix: m x 1 estimated frequencies

vcv matrix: coefficient estimated covariance matrix

aic scalar, information criteria

stderr matrix: coefficient standard error

m scalar, number of categories

ncoeff scalar, number of coefficients

coeff matrix: ncoeff x 1 estimated parameter

after transformation

----------------

printout

-------------------

usage: printout(mod)

print the estimated results after transforming

estimated row coefficients

inputs:

mod bundle, is the return of the CUB function

--------------------

multicub
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-------------------------

usage: multicub( my, m, mshelter,verb)

estimate CUB(0,0) models, also with shelter, on a list

of dependent variables

inputs:

my list, list of series rating or ranking on m categories

m scalar, number of categories

mshelter matrix 1 x nelem(my) shelter for each element of my

verb scalar, verbose control, default 0

output

matrix nelem(my) x 2, estimated pai and csi for each

element in my

--------

plot_distr

--------

usage: plot_distr(mod)

Plot the observed and estimated frequencies

inputs:

mod bundle, is the return of the CUB function

--------

plot_distr_exod

--------

usage: plot_distr_exod(mod, dummyexo)
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Plot the estimated probabilities for dummy covariates

inputs:

mod bundle, is the return of the CUB function

dummyexo series, dummy covariates

-------------------------------

plot_multicub

--------------------------------

usage : plot_multicub( my, coord,dest)

plot the results of multicub function. pai and csi

for each model as coordinates

inputs:

my list, list of series rating or ranking

on m categories

coord matrix, output of multicub function

dest string, filename for storing the graph,

default null=display
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